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Abstract 

 

  Lethal factor (LF), a component of anthrax toxin, is the primary virulence factor 

that allows Bacillus anthracis to evade the immune response by blocking the activation of 

mitogen-activated protein kinase (MAPK) enzymes.  This research modifies three 

published MAPK models to reflect this signal inhibition and to estimate a first-order 

reaction rate by fitting the models to published viability data for two macrophage cell 

lines cultured with the LF-producing Bacillus anthracis-Vollum1B strain.  One model 

appears to be ill-suited for this purpose because not all relevant MAPK components could 

be integrated into the inhibition equations.  Despite different underlying parameters and 

values, the remaining two models display consistent behavior, due to the highly 

conserved signal pathway structure, and provide approximately equal rate constants and 

measures of the relative sensitivity between cell lines.  The results demonstrate model 

robustness and an ability to guide experimental design toward quantifying the LF reaction 

rate and estimating the sensitivity of human alveolar macrophages.  The models serve as a 

first step toward an inhalation dose-response model and, by providing a measure of 

differential susceptibility, can lend increased confidence in extrapolation between cell 

types in vitro or between species in vivo.
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THREE MODELS OF ANTHRAX TOXIN EFFECTS ON 
THE MAP-KINASE PATHWAY AND MACROPHAGE SURVIVAL 

 
 
 

I.  Introduction 
 

 
Motivation 

Centuries before the role of pathogenic microorganisms was discovered, the 

impact of disease on a community was well understood by those wishing to kill and 

demoralize an enemy.  In the mid-fourteenth century, forces surrounding the walls of 

Caffa, a coastal city on the Crimean Sea, suddenly took heavy losses from plague and, 

hoping “that the intolerable stench would kill everyone inside,” began catapulting the 

“mountains” of victims into the city (Derbes, 1966:180; Wheelis, 2002:973).  After 

enduring three years of siege, the defenders were quickly overcome by pestilence and fled 

by sea; their destination ports became the initial sites of the Black Death that killed over 

one quarter of Europe in just six months (Derbes, 1966:181-182).  Despite occurring 600 

years ago, the Great Plague remains the public’s ideation of a pathogen’s potential for 

devastation.  The anthrax letters that infected 23 and killed 5 in late 2001 (USAMRIID, 

2005:10) and continuous news reports about severe acute respiratory syndrome (SARS), 

avian flu pandemic, and weapons of mass destruction (WMD) have heightened public 

awareness of the threat posed by microorganisms.  Motivated by this threat, this research 

aims to advance knowledge of inhalational anthrax pathogenesis by developing a model 

of a critical biomolecular reaction exerted by anthrax toxin on alveolar macrophages. 
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Biological Weapons History and Increasing Threat. 

The biological weapons threat is very real.  Japan had an aggressive research 

program during World War II that included disseminating plague infected fleas from 

aircraft, causing epidemics in villages in China and Manchuria (USAMRIID, 2005:4).  

According to a 1994 study by Meselson, as relayed by U.S. Army Medical Research 

Institute for Infectious Diseases (USAMRIID), “an accidental aerosol release” of anthrax 

spores from a Soviet military facility in 1979 caused “66 fatalities in the 77 patients 

identified” in Sverdlovsk, the town downwind from the compound (USAMRIID, 2005:7).  

Under United Nations scrutiny in 1991, Iraq confirmed running an extensive offensive 

bio-weapons program; over 6,500 liters of anthrax and 11,500 liters of toxins had been 

loaded into munitions and deployed throughout Iraq earlier that year (USAMRIID, 

2005:8).  Today “at least 17 nations are believed to have offensive biological weapons 

programs” (Inglesby and others, 1999:1736), but the modern biological weapons threat 

does not come only from nation states with established laboratories.   

Examples of terrorists using or planning to use biological weapons are recorded 

with increasing frequency over the last 25 years.  In 1984 the Rajneeshee cult sprayed 

salmonella on food in Oregon restaurants in an attempt to influence local elections (Shea, 

2004:CRS-2).  Aum Shinrikyo gained notoriety by attacking Tokyo subways with sarin 

nerve agent, killing 12 and injuring over 6,000 (Cronin, 2003:CRS-1).  Investigation also 

revealed at least eight unsuccessful anthrax and botulism aerosol attacks in the streets of 

Tokyo from 1993 to 1995 (Inglesby and others, 1999:1736; USAMRIID, 2005:10).  The 

anthrax mail attacks in the U.S. brought the threat into sharp focus and resulted in 
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increased biodefense efforts by law enforcement and public health agencies across the 

United States and perhaps the world.  Subsequently, authorities thwarted a terrorist cell’s 

plan to put cyanide in the water supply to the U.S. Embassy in Rome in 2002 (Cronin, 

2003:CRS-4).  Between January 2003 and February 2004, “terrorist plots to use ricin 

were uncovered in England,” and “ricin was found in a South Carolina postal 

facility…and in the Dirksen Senate Office building in Washington, D.C.” (USAMRIID, 

2005:11).  These examples are only a few of the bio-terror incidents in recent years. 

Reasons for this increased usage are addressed in Terrorist Motivations for 

Chemical and Biological Weapons Use: Placing the Threat in Context, a March 2003 

Congressional Research Service (CRS) Report For Congress by Audrey Kurth Cronin, a 

terrorism expert for the CRS.  The terrorist chemical and biological weapons (CBW) 

threat has increased because the “internationalization of terrorism” has all but erased the 

moral and political boundaries observed by traditional terrorists like the Irish Republican 

Army (IRA) and the Basque National Party in Spain (Cronin, 2003:CRS-3).  Religious 

militants are willing to kill large numbers of “heretics or infidels” and sacrifice their own 

members, such as by suicide bombing in public gathering areas (Cronin, 2003:CRS-3).  

Unconventional weapons, information and expertise are more available due to 

unaccounted-for former Soviet program assets (and possibly Iraqi assets).  Finally, 

terrorists have demonstrated “clear indications of interest in CBW,” such as when Osama 

bin Laden “spoke of acquiring weapons of mass destruction being a ‘religious duty’” and 

when al Qaeda dedicated a volume to producing CBW in the “Encyclopedia of Jihad” 

(Cronin, 2003:CRS-3–CRS-4).  USAMRIID’s Medical Management of Biological 
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Casualties Handbook, commonly known as The Blue Book, aptly emphasizes to medical 

providers that the reality of the threat should not be eschewed: 

The threat of the use of biological weapons against U.S. military forces and 
civilians is more acute than at any time in U.S. history, due to the widespread 
availability of agents,…knowledge of production methodologies, and potential 
dissemination devices. …Therefore, awareness of and preparedness for this 
threat…is vital to our national security.  (USAMRIID, 2005:12) 
 
Anthrax Threat. 

Anthrax is a zoonotic disease caused by Bacillus anthracis (BA), a gram-positive, 

encapsulated, rod-shaped bacterium (USAMRIID, 2005:34; Heymann, 2004:20).  BA 

exists in the environment in a metabolically inactive spore form, which results when 

nutrients are no longer available and which, unlike vegetative bacteria, lead to disease 

upon bodily uptake (Liu and others, 2004:164).  Layers form an “armored external shell,” 

depicted in Figure 1, to protect the dormant bacterium in the core where the DNA is 

preserved in a crystalline form for later reanimation by rehydration (Driks, 2003).  While 

active bacteria survive only briefly outside a host or for 24 hours in water (Inglesby and 

others, 1999), the shell layers protect the spore from changes in humidity, temperature, 

and pH, solar radiation, and other environmental conditions for decades or possibly 

longer (Driks, 2003; Nicholson and others, 2000).  BA spores germinate in a moist, 

nutrient-rich environment like the human body; then the vegetative bacteria multiply 

rapidly and cause anthrax disease in three unique forms: cutaneous, gastrointestinal, and 

inhalational.  Cutaneous anthrax occurs naturally among those working with animals or 

their skins and has a mortality rate of less than 1% when treated (USAMRIID, 2005:36).  

Insufficiently cooked meat from infected animals can cause rare cases of gastrointestinal 
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Figure 1:  Image of Bacillus anthracis by transmission electron 

micrograph, showing cell division (A) and spore (B), left 
(http://phil.cdc.gov/phil/bt.asp, photo ID #1813); and detail 

of protective layers of a Bacillus spore, right (after Driks, 2003). 
 
 
 

anthrax, which may result in pharyngeal ulcers or flu-like symptoms that can progress to 

sepsis, resulting in a high mortality rate of 50%.  Because spores can be dispersed in an 

aerosol and because mortality may reach 85% with treatment, inhalational anthrax is the 

“primary concern for intentional infection” in humans (USAMRIID, 2005:36-37).  The 

ability of a naturally occurring disease to cause such high morbidity and mortality is not 

sufficient for a disease to be suitable for use as a biological warfare agent.   

For application as a bio-warfare agent, a microorganism must also be able to be 

mass produced, be stable enough to survive dissemination and the environment, and be 

reasonably quick to cause disease or death; and the resultant disease must be preventable 

or treatable (van Aken and Hammond, 2003:S58).  The latter requirement applies 

primarily to a nation state using bioagents against an enemy while not wanting to harm 
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friendly forces.  However, this requirement may not apply to modern terrorist groups 

willing to sacrifice their own people and cross international borders to conduct the attack 

far from home, where risk to their countrymen is reduced.  Regarding the four other 

requirements, “anthrax is of course the first choice because the causative agent, B 

anthracis, fulfils nearly all of these specifications,” where the only specification not met 

is in the ability to successfully treat anthrax victims “even several days after infection” 

(van Aken and Hammond, 2003:S58).  However, the 2001 anthrax letters did not have a 

large quantity or a technical dissemination device; though a slow-acting pathogen, the 

covert nature of the attacks resulted in delayed diagnosis and widespread fear.  Law 

enforcement, laboratories, and the military have embarked on developing greater defense 

against such terrorist attacks. 

In an effort to prioritize biodefense efforts, CDC led a risk assessment of sixteen 

potential bioagents.  Anthrax ranked higher than or equal to the other threat agents in five 

of the six categories: infection rate, death rate, ease of production and dissemination, 

public perception of risk, and need for specialized planning and logistical preparations.  

Only smallpox was given higher priority due to a maximum score in the sixth category of 

person-to-person transmissibility, whereas anthrax received a score of zero because 

anthrax is not communicable between people (Rotz and others, 2002).  A significant 

number of lives would still be lost from a large scale anthrax attack.  The dissemination 

of 100 kg of weaponized anthrax outside a major metropolitan area such as Washington 

D.C. could result in 130,000 to 3,000,000 deaths, where the numbers increase with 

dissemination under more ideal weather conditions (OTA, 1993:54).  Comparatively, the 
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combined deaths from the World War II fire bombing of Tokyo, Japan and Dresden, 

Germany was approximately 300,000 (OTA, 1993:2).  A major anthrax attack would 

equal or surpass the lethality of a one megaton (TNT-equivalent) hydrogen bomb and 

dwarf a 1,000-kilogram sarin attack by three orders of magnitude (OTA, 1993:53).  The 

significant public health risks, when combined with increased threat, motivate 

microbiological research to better elucidate the pathogenesis of inhalational anthrax and 

to identify biomolecular mechanisms that may lead to advances in defense or treatment. 

 
Background 

Intracellular Signaling and Anthrax Toxin. 

Just as some multicellular organisms use hormones to signal between organs and 

systems to trigger growth, reproductive development, or metabolic changes, all eukaryotic 

cells use highly-selective, internal signaling pathways to implement proliferation, 

differentiation, movement, enzymatic changes, gene expression, or cell death 

(Downward, 2001:759).  This intracellular communication network is extremely 

complicated, like a three-dimensional, interdependent and interactive spider web of 

biochemical relationships spanning the cytoplasm between the cell membrane and the 

nucleus.  An alveolar macrophage (AM) is a highly phagocytic leukocyte serving as the 

innate immune system’s first-responder, responsible for clearing the lungs of respired 

particles, for recruiting other immune cells, and for triggering antibody (Ab) production 

by stimulating lymphocytes (Dörger and Krombach, 2002:47).  (Terms like leukocyte, 

antibody and lymphocyte, as well as acronyms and abbreviations like AM, are defined in 

Appendix A.)  An AM is dependent on its internal molecular communication network for 
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up- and down-regulating gene expression that mediates macrophage activation, defensive 

factors, inflammation, and apoptosis, to facilitate combating an infection.  Recent 

research shows that interruption of critical signal transduction pathways changes the 

macrophage and immune system responses and allows the survival of many pathogens: 

Brucella abortus, a bacterium that causes brucellosis (Jarvis and others, 2002:7162); 

Leishmania donovani, a parasitic protozoan that causes leishmaniasis (Junghae and 

Raynes, 2002:5034); all three pathogenic Yersinia species of bacteria (Zhang and others, 

2005:7946-7948); Plasmodium falciparum, the parasite that causes malaria (Zhu, 

Krishnegowda and Gowda, 2005:8623); and the biological threat agent Bacillus anthracis 

(Park and others, 2002:2048). 

In inhalational anthrax, aerosolized spores are respired into the alveoli of the 

lungs, where vigorously phagocytic alveolar macrophages (AM) rapidly ingest the foreign 

particles.  Normally the key executor of early bactericidal action, the AM instead serves 

as the primary site of the BA spore’s germination into a vegetative bacterium (Guidi-

Rontani and others, 1999:13).  The reanimated bacterium must quickly begin to produce 

anthrax toxin (AT) to suppress the macrophage’s production of cytotoxic reactive oxygen 

intermediates and of cytokines, proteins that would recruit additional innate and adaptive 

immune cells to the site of infection (Guidi-Rontani, 2001:935; Chakrabarty and others, 

2006:4430).  AT is composed of three parts: protective antigen (PA), lethal factor (LF) 

and edema factor (EF).  The binding of a factor with PA results in the correlating toxin, 

lethal toxin (LF + PA = LT) or edema toxin (EF + PA = ET).  PA binds to receptors on 

cell membranes and forms a complex with LF and EF; the complex is then endocytosed 
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into the cytosol (Park and others, 2002:2048; Singh and others, 1999:1857-1858).  ET 

increases the cytoplasmic concentration of cyclic adenosine monophosphate (cAMP), 

which causes the edema (Leppla, 1991:3164).  The critical mechanism is the interruption 

of the cell’s signal network when LF, a proteinase, cleaves enzymes in one of the most 

common (and most frequently studied) signal path families, the mitogen-activated protein 

kinase (MAPK) cascade.  By eliminating intermediate enzymes in a series of enzyme 

activations, LF prevents downstream enzymes’ activation (the signal output), inhibiting 

subsequent nuclear transcriptions required for normal immune response and facilitating 

programmed cell death (Park and others, 2002:2048).  Decades of in vitro and in vivo 

studies were supported by a study in which mice were injected with BA clones able to 

produce only two of the three toxin components; the results “strongly suggest that LF in 

combination with PA is the key virulence factor” (Pezard, 1991:3476).  However, in vivo 

exposure to LT alone is not equivalent to inhalational anthrax due to the difference in 

immune response mechanisms for injected toxin and inhaled spores. 

The macrophage, called a Trojan horse in many journal articles, plays a prominent 

role in anthrax pathogenesis.  Macrophages transport BA from the alveoli, through the 

mucosal layer that typically bars direct bacterial penetration, and to the mediastinal lymph 

nodes between the lungs (Guidi-Rontani, 2002:407).  The bacteria proliferate, cause 

lymphadenopathy for which chest a x-ray will show characteristic widened mediastinum 

(see Figure 2), and cross into the bloodstream, causing respiratory distress, septicemia, 

shock, and death (USAMRIID, 2005:37).  The macrophage has been implicated in 

toxicity even in the absence of bacteria.  For undetermined reasons, mice depleted of their  
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Figure 2:  Chest radiograph of inhalational anthrax victim, 22 hours before death 

(modified from CDC, http://phil.cdc.gov/phil/bt.asp, photo ID #1118) 
 

 

macrophages before injection with a lethal dose of LT were resistant to the toxin (Hanna 

and others, 1993:10199).  By inhibiting MAPK signaling, BA turns the macrophage’s 

activation signal into “a trigger of rapid cell death,” meaning no active macrophages 

“alert the remainder of the immune system to the presence of the pathogen” (Park and 

others, 2002:2051).  An understanding of macrophage MAPK inhibition by LF and the 

resultant effects is critical to advancing anthrax treatment and biodefense research.  The 

dynamic nature of the host-pathogen system demands a dynamic investigation method. 

Systems Biology. 

 While advances in genomic research have permitted the cataloguing and analysis 

of a multitude of cellular components, laboratories are frequently resource limited and 

thus “concentrate on models that are part of a larger whole” or, in signal transduction, 
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“individual pathways and usually only a subset of proteins for any particular experimental 

set-up” (Cho and Wolkenhauer, 2003:1504).  Experimental scope is also constrained to 

facilitate drawing conclusions within the highly variable intracellular environment.  

Researchers often only investigate the function of individual proteins, genes, or other 

biomolecules and therefore reveal only associations or covariant relationships while 

failing to determine causality (Cho and Wolkenhauer, 2003:1503).  Volumes of 

fragmented data do not readily provide understanding of behavior, because in reality: 

• One stimulus may activate multiple pathways and cause multiple responses;  

• Redundancies exist (so inhibitors may not fully have the intended effect);  

• Positive and negative feedback loops are embedded throughout signal pathways;  

• Pathway components’ kinetic relationships are often non-linear; 

• Cells constantly sense and respond to multiple stimuli simultaneously; and 

• Signal transduction is both time and space dependent. 

“A different approach is necessary to identify causal entailment directly from 

experimental data”; “a signal- and systems-oriented approach is the way forward in the 

understanding of gene expression and regulation” (Cho and Wolkenhauer, 2003:1503).  

An emerging discipline of mathematical modeling known as systems biology (SB) blends 

microbiology and engineering to bridge the gap between existing, piecemeal experimental 

data and the “relationships…that give rise to cause and effect in living systems” (Cho and 

Wolkenhauer, 2003:1503).  The goal is a more holistic view of how cells function and 

what gives rise to behavior.  SB models are used to validate current understanding, 

indentify incongruities, predict behavior, “reveal features not easily recognizable by 
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examining the constituent parts,” and “suggest experimentally testable hypothesis” (You, 

2004:169,175).  Even highly simplified models based on significant assumptions can be 

useful, even if unable to predict behavior, by guiding experimental design and by helping 

“to identify which variables to measure and why” (Cho and Wolkenhauer, 2003:1509). 

Although “host-pathogen systems biology is still in its infancy” (Forst, 2006:220), 

cost reduction and acceleration of therapy and drug discovery has led researchers to use 

the paradigm to examine signal inhibition for: Group A Streptococcus (Musser and 

DeLeo, 2005);  Plasmodium parasites that cause murine (rodent) malaria (Fraunholz, 

2005);  Helicobacter pylori, the bacteria that cause ulcers (Franke and others, 2008); and 

macrophage activation by an endotoxin (Tegner and others, 2006).  In vivo and in vitro 

MAPK research has already been integrated into ‘dry lab’ experiments performed in 

silico, a term coined to describe the computer chips in which the computations occur.  

However, based on review of the literature, it is believed that no host-pathogen SB study 

has examined the signal interactions of a macrophage and Bacillus anthracis or its toxin. 

 
Research Objectives 

As expressed by various authors in the SB discipline, even a simple model may 

prove useful for predicting intracellular interactions and, therefore, for establishing 

hypotheses toward tailored laboratory investigation.  The purpose of this research is to 

develop a model that depicts the effect of anthrax lethal factor on the macrophage MAPK 

signaling pathway by comparison to in vitro data for macrophage cell death.  The model 

will also provide estimates of the MAPKK cleavage reaction rate constant.  Published and 

fully parameterized signaling models are used as the model foundation to which the 
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equations for the host-pathogen interaction are added.  A basic model of the key host-

pathogen intracellular activities is the first step in developing more detailed cell signaling 

models that may include combined toxin effects, multiple signal path effects, gene 

transcription and cytokine secretion, or toxin effects in other immune and non-immune 

cells. Models of increasing scale, such as macrophage migration to the lymph nodes or 

system-level immune response, may also follow.  Ultimately, though a human infection 

model is “still in the realm of science fiction” (Forst, 2006:227), an airborne spore 

concentration-dependent dose-response model is needed for a more accurate health risk 

assessment following an anthrax attack.  Modeling may also progress to drug discovery or 

investigation of prophylaxis options.  This initial model of the root pathologic mechanism 

should aid in designing experiments that will facilitate advancing the model. 

 
Scope and Limitations 

The models developed here are specific to the macrophage and do not consider 

other leukocytes, evasion of the immune response, or systemic disease.  The models are 

limited to the interactions of lethal factor with the MAPK cascade.  The models exclude 

the potential effects of edema factor and protective antigen and do not address toxin 

interaction with other pathways as possible contributions to virulence and pathogenesis.  

Each model investigated here is assumed to be an accurate representation of the 

underlying data, referenced in the respective work, and to be properly parameterized.  The 

cascade kinetics and constants are assumed to be applicable to the activated macrophage, 

and those values are assumed to be unaffected by phagocytosis of B anthracis by the 

macrophage.  The cleavage of MAPK signal intermediates by LF is assumed to be 
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catalytic and first-order.  Further, despite the existence of a number of molecular 

variations (isoforms), target intermediates are treated as a group because LF reacts with 

nearly all forms at the same level in the cascade.  Finally, the active MAPK concentration 

is assumed to be linearly related to the cell viability data from “Differential susceptibility 

of macrophage cell lines to Bacillus anthracis-Vollum 1B,” published in Toxicology in 

Vitro by Gutting et al in 2005, in which macrophage cells were cultured in tandem with a 

LT-producing strain of BA.  The limitations and assumptions collectively result in 

limitations on the application of the models.  The models cannot be used as predictive 

tools for detailed cell or system response, for cells other than macrophages, or as dose-

response models.  While the models are expected to perform qualitatively as 

representations of system behavior, the limited cell viability data and inability to 

accomplish stronger validation tests also result in limited confidence in quantitative 

output of the models. 
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II.  Literature Review 
 
 

Chapter Overview 

 For over a century Bacillus anthracis (BA), the causative bacterial agent leading 

to anthrax disease, has been to microbiologists what the fruit fly has been to traditional 

(macro) biologists.  Before biologists observed inheritance of genetic traits in fruit flies, 

microbiologists were developing theories on pathogenic disease transmission using BA. 

Research has since been conducted into the effects of anthrax on numerous animals, 

immune cell types, epithelial cells, and even nerve cells.  The components of anthrax 

toxin have been purified and used for in vivo and in vitro research for many years.  More 

recently, the effect of anthrax toxin on immune cell MAPK signaling has been 

investigated in vitro and in vivo.  This literature review begins by providing more detail 

on the MAPK signaling enzyme family and the MAPK-mediated cellular immune 

response.  The topics of pathogenesis and biomolecular effects of inhalational anthrax on 

the immune cells follow.  Finally, the systems biology modeling approach is introduced, 

and the selection of published MAPK cascade models built upon for this analysis will be 

covered with respect to their unique attributes. 

 
Signaling and Immunity 

Mitogen-Activated Protein Kinases. 

It is necessary to simplify signal transduction from “the impenetrable soup of 

acronyms that it might at first appear to be” into key functional roles or sequential steps 

seen in most signaling pathways (Downward, 2001:759).  First, as a form of sensory 
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perception that allows information about the extracellular environment to be internalized, 

cell membrane surface receptors bind with specialized stimulus molecules called ligands 

on the external side of the membrane, often resulting in changes in structure or 

orientation of the surface receptor molecules.  Second, a change at the intracellular end of 

the receptors initiates the cell’s internal signaling, commonly by activation of enzymes.  

Third, the active enzymes recognize certain proteins; an enzyme will bind with a target 

protein to form a complex or will catalytically activate other proteinaceous enzymes.  A 

series of enzyme activations, known as a cascade, may occur.  Finally, whether by one or 

many steps in series, the signal’s chain reaction commonly ends with a product protein 

entering the nucleus and altering gene transcription activities by either activating or 

inhibiting proteins known as transcription factors that mediate generation of messenger 

ribonucleic acid (mRNA), a protein synthesis template that facilitates information transfer 

from the DNA to the cytoplasm (Downward, 2001:759-760).  Signal strength can be 

affected by interaction of enzymes with upstream mediators in the same reaction chain, 

resulting in either a positive or negative feedback loop.  “Some pathways work as on/off 

switches”: a signal does not complete the path from surface receptor to transcription 

factor unless the intensity of the input signal at the surface receptors reaches a threshold 

level, at which point “positive feedback results in full activation of downstream targets” 

(Downward, 2001:762).  Kinases are perhaps the most common and, therefore, the most 

represented enzymatic messengers in research. 

A kinase is an enzyme which transfers a phosphate group from a donor such as 

adenosine triphosphate (ATP), the key supplier of energy to cells for various biochemical 
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processes, to a target molecule.  This process, known as phosphorylation, has the effect of 

either activating or inhibiting the receiving target.  Naming of a kinase is based on the 

substrate: a protein kinase targets a protein for phosphorylation; similarly, a kinase kinase 

is a kinase that phosphorylates another kinase.  The term mitogen-activated protein kinase 

(MAPK) was originally the name for a specific phosphoprotein in the early 1980s, but 

research has since revealed dozens of enzymes with similar structure and biological 

functions (Pearson and others, 2002:154).  A mitogen is an extracellular stimulus that 

signals for the initiation of mitosis; however, just as multiple MAPKs with different 

terminal functions have been identified, various cytokines (non-antibody proteins released 

as intercellular mediators of immune response to an antigen), thermal stress, and osmotic 

shock have been identified as MAPK cascade stimuli (Pearson and others, 2002:158).  

MAPK thus became a term for a family of enzymes and then, after analysis showed 

multiple isoforms of each MAPK type, a “superfamily” (Nick and others, 2001).  “All 

eukaryotic cells possess multiple MAPK pathways, which coordinately regulate diverse 

cellular activities running the gamut from gene expression, mitosis, and metabolism to 

motility, survival and apoptosis, and differentiation” (Roux and Blenis, 2004:321).   

The biochemical stages that apply to each MAPK pathway can also be simplified 

as seen on the left half of Figure 3.  At the cell membrane, a MAP kinase kinase kinase 

(MAPKKK, also herein denoted as generic enzyme E3 for simplicity) is activated by cell 

surface receptors in response to external stimuli.  MAPKKKs in turn activate a MAP 

kinase kinase (MAPKK, or E2) by phosphorylating two amino acid sites via two separate 

reactions.  Finally, MAPK (E1) is also activated by MAPKKs by two reactions (Roux and  
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Figure 3: Steps of the MAPK cascade (modified from Roux & Blenis, 2004) 

 
 

Blenis, 2004:321).  On the right, Figure 3 depicts the three main subfamilies of terminal 

MAPKs: extracellular signal-regulating kinase (ERK), p38, and c-Jun N-terminal kinases 

(JNK).  Multiple isoforms exist within each of the three main modules and are typically 

designated by a number, as in ERK1, or with a Greek character, such as p38α.  As the 

final tier in the cascade (not shown in the figure), the active MAPKs either activate 

regulatory biomolecules in the cytoplasm or migrate into the nucleus to activate 

transcription factors for production of various isoform-dependent cytokines.  Some of the 

cytokines are specialized chemoattractants called chemokines that are released during 

inflammation to mobilize and activate phagocytes and lymphocytes.  Table 1 lists some of 

the cellular sources and immune functions of some cytokines related to macrophages.  

Blocking a signal through inhibition or reaction with MAPK or an upstream kinase may 

disrupt intracellular homeostasis or regulatory mechanisms through excess or insufficient  
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Table 1: Cytokine sources and immunoregulatory functions 
Cytokine Source(s) Physiologic Actions 
Interleukin-1 
(IL-1) 

Macrophages 
B cells 
Many non-immune cells 

Activation and proliferation of T cells 
Proinflammatory 
Induces fever and acute-phase proteins 
Induces synthesis of IL-8 and tumor 
necrosis factor-alpha (TNF-α) 

IL-6 Macrophages 
Activated T cells 
B cells 
Fibroblasts 
Endothelial cells 

Enhances B cell differentiation and Ab 
secretion 
Proinflammatory 
Proliferation of T cells, increased IL-2 
receptor expression 

IL-8 Macrophages 
Platelets 
Natural killer (NK) cells 
Endothelial cells 

Activation and chemotaxis of 
monocytes, neutrophils, and T cells 
Proinflammatory 

IL-10 Macrophages 
T cells 
B cells 

Inhibits macrophage cytolytic activity 
and activation of T cells 
Inhibits cytokines in helper T cells 
Enhances cytotoxic T cell activity 
Enhances activated B cell proliferation 
Anti-inflammatory 

IL-12 Macrophages 
B cells 

NK cell proliferation and cytolytic 
action 
Cytotoxic T cell activation, proliferation 
Stimulates production of IFN-γ 
Proliferation of activated T cells 

IL-15 Activated monocytes 
Macrophages 
Many non-immune cells 

NK cell activation 
T cell proliferation 

Interferon-α/β 
(IFN-α/β) 

Leukocytes 
Epithelial cells 
Fibroblasts 

Induction of class I expression 
Antiviral activity 
Stimulation of NK cells 

Tumor necrosis 
factor-α     
(TNF-α) and 
lymphotoxin 
(TNF-β) 

Macrophages 
Lymphocytes 

Induces inflammatory cytokines 
Increases vascular permeability 
Activates macrophages and neutrophils 
Tumor necrosis action 
Primary mediator of septic shock 

Transforming 
growth factor-β 
(TGF-β) 

Macrophages 
 

Enhances macrophage chemotaxis 
Enhances wound healing 
Inhibits T and B cell proliferation 
Inhibits macrophage cytokine synthesis 
Inhibits Ab secretion 

(adapted from Klaassen and Watkins, 2003: 181) 
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cytokine production, which in turn can lead to apoptosis, necrosis, or a failure to respond 

to exoteric substances. 

 A pathogen that can alter gene transcription can thus alter the immune cell’s 

response.  One study analyzed five different bacteria that were phagocytosed by 

neutrophils, which are highly microbicidal phagocytes that constitute the largest fraction 

of leukocytes, also known as polymorphonuclear (PMN) leukocytes, granulocytes or 

professional antigen presenting cells (APC).  The neutrophils subsequently experienced 

up- and down-regulation of common sets of genes leading “to resolution of bacterial 

infection” followed by apoptosis (Kobayashi and others, 2003:10951).  Phagocytosis of a 

sixth bacterium, Streptococcus pyogenes, affected transcription of the same gene sets in 

the same manner as the other five, but also simultaneously down-regulated 21 additional 

genes that control immunoregulatory factors known as interferons (IFN).  Neutrophil 

apoptosis was highly accelerated and then, unlike the other five, followed by necrosis.  

The change in gene transcription uniquely “alters the apoptosis differentiation program in 

neutrophils, resulting in pathogen survival and disease” (Kobayashi and others, 

2003:10951).  Though these effects on gene expression may not have been caused by 

MAPK signal inhibition, the MAPK cascade is responsible for regulating the expression 

of cytokines involved in cellular and systemic immune response. 

 MAPKs and Immunity. 

The cytokine tumor necrosis factor-alpha (TNF-α) is a “proinflammatory cytokine 

that acts as a mediator of host defense against…infection and is principally expressed in 

macrophages” at up to 10,000 times normal levels upon bacterial challenge (Zhu and 
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others, 2000:6349).   TNF-α regulates immune cell inflammatory response and apoptosis, 

but release of TNF-α is first regulated through MAPK signaling.  In an investigation of 

the relationship between the MAPK signal, TNF-α, and immunity, murine alveolar 

macrophages and neutrophils were treated with “the most highly selective and potent 

inhibitor of p38 MAPK described to date” and then stimulated by lipopolysaccharide 

(LPS), an endotoxin derived from Gram-negative bacteria and commonly used as a 

macrophage activator (Nick and others, 2000:2152).  “Rapid accumulation of neutrophils 

to the lung in response to a proinflammatory stimulus is one of the first recognizable 

events in the pathogenesis of many pulmonary diseases” (Nick and others, 2000:2151).  

Inhibition of p38 in vitro blocked LPS-induced secretion of TNF-α and the murine-

homologues of IL-8, a neutrophil-specific chemoattractant; and administration of the p38 

inhibitor by gastric intubation resulted in a 50% drop in TNF-α secretion and failure of 

the neutrophils to migrate to the lungs in vivo (Nick and others, 2000:2152).  Neutrophil 

recruitment may have failed in vivo because the p38-inhibited neutrophils could not 

mobilize toward the chemoattractant, because the p38-inhibited macrophages and 

epithelial cells could not produce adequate chemoattractant, or due to a combination of 

both.  Regardless, the results show that MAPK inhibition causes the immune cells and 

system to respond in a significantly reduced capacity. 

MAPK activation and inhibition has been studied for a number of diseases, as was 

briefly summarized in the introduction.  MAPK cascades have been investigated by 

neurologists searching for the molecular basis of memory formation (Sharma and Carew, 

2004) and have even been researched in heavy metal toxicity and thermal stress response 
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in mollusks (Kefaloyianni and others, 2005).  The cytokine-inducing roles ERK, p38 and 

JNK pathways were examined in murine bone-marrow derived macrophages exposed to 

Plasmodium falciparum, a parasite that causes malaria in rodents.  In vitro testing with 

targeted inhibitors revealed that all three pathways are activated by the pathogen and that 

each correlates to the expression of a different set of cytokines.  A demonstration of 

specificity and redundancy between pathways occurs between the two JNK isoforms.  

JNK1 and JNK2 both trigger secretion of TNF-α by macrophages stimulated with the 

parasite’s proinflammatory factors, but only activation of the JNK2 MAPK path results in 

interleukin-12 (IL-12) production (Zhu, Krishnegowda and Gowda, 2004:8624-8625).  

Similar to some anthrax studies, rapid apoptosis of macrophages has been found to 

facilitate survival of Yersinia pseudotuberculosis.  A protease (an enzyme that 

catalytically breaks down proteins, also called a proteinase) associated with the pathogen 

inhibits activation of the JNK, p38, and ERK pathways (Zhang and others, 2005:7947).  

The result is a lack of enzyme-mediated gene expression of anti-apoptotic factors that 

would allow the macrophage time to respond to the ingested pathogen, and instead the 

macrophage experiences rapid apoptosis.  As mentioned above, anthrax LF is also a 

protease and inhibits nearly all MAPK cascades.  Interestingly, another study of MAPK 

signaling, in relation to the disease leishmaniasis, showed that “a specific inhibitor of 

p38…increases Leishmania donovani survival in human peripheral blood mononuclear 

macrophages” and that treatment with a p38 and JNK activator actually reduced parasite 

survival while decreasing the macrophage infection rate by 50% (Junghae and Raynes, 

2002:5026).  Hijacking the macrophage’s internal communication network, and often 
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times the MAPK cascades specifically, presents pathogenic microorganisms the 

opportunity to breach the barrier of early immune response and go on to cause systemic 

infection.  Yet the reverse is also true: “MAPK activation may have a potential 

therapeutic value” (Junghae and Raynes, 2002:5026). 

Differential Responses. 

Despite the findings of Nick et al on MAPK-mediated TNF release in relation to 

neutrophil recruitment, the unique roles of the three primary MAPK groups in cytokine 

production are still unclear.  A 1999 article in the Journal of Surgical Research, 

“Macrophage TNF Secretion in Endotoxin Tolerance: Role of SAPK, p38, and MAPK” 

by Kraatz et al, investigated the effects of repeated stimulation and appears to agree with 

the findings of Nick et al.  Testing peritoneal murine macrophages pre-treated with LPS 

24 hours prior to LPS activation and analysis, Kraatz et al indicate that LPS activates 

stress-activated protein kinase (SAPK, called JNK here), p38, and MAPK (called ERK 

here); that “partial blockade of p38 alone results in decreased TNF” in a dose-response 

relationship; and that, though the role of ERK is unclear, JNK does not appear to be 

required for TNF-α release (Kraatz and others, 1999:163).  However, in the June 2000 

edition of The Journal of Immunology, Zhu et al published “Regulation of TNF 

Expression by Multiple Mitogen-Activated Protein Kinase Pathways,” in which they 

found that LPS activates all three main MAPK modules in the RAW264.7 macrophage 

cell line, and that all three are necessary for full TNF-α production.  A similar study with 

the same cell line only identified p38 and JNK as being activated by LPS stimulation; that 

study also found that treatment of cells to dephosphorylate p38 and JNK resulted in “a 
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substantial decrease in TNF-α production” without a significant decrease in active ERK 

(Chen and others, 2002:6414).  In vitro analysis of Group B Streptococci (GBS) 

activation of monocytes, which are macrophage precursors, resulted in a dose-dependent 

activation of all three main MAPK subgroups; however, MAPK activation by GBS was 

more delayed and of longer duration that LPS-induced MAPK activation.  The effect of 

JNK inhibition was not tested, but inhibiting either the ERK or p38 MAPK pathways did 

partially inhibit TNF-α expression.  The simultaneous inhibition of ERK and p38 was 

required to completely block TNF-α release (Mancuso and others, 2002:1401-1402). The 

p38 inhibitor used by Nick et al blocked TNF-α release effectively, like anthrax LT does, 

whereas the p38-specific inhibitor used by Park et al in “Macrophage Apoptosis by 

Anthrax Lethal Factor Through p38 MAP Kinase Inhibition,” published in Science in 

2002, did not prevent TNF secretion (Park and others, 2002:2050), and the p38 inhibitor 

used on the GPS-activated monocytes caused significant but partial TNF-α expression.  

Interestingly, Park et al and Kraatz et al used the same inhibitor (SB202190) but obtained 

very conflicting results, with the former finding no TNF-α inhibition and the latter finding 

dose-dependent inhibition (supporting Nick et al).  One possibility is that repeated 

stimulation affects the macrophages’ response; but the underlying biological variation 

among cells and animals is generally known to make a difference in cell response. 

Bonni et al described the pro-survival, anti-apoptotic functions of ERK in “Cell 

survival Promoted by the Ras-MAPK Signaling Pathway by Transcription-Dependent and 

–Independent Mechanisms” from the 12 November 1999 issue of Science.  When 

activated in neurons, ERK “promotes cell survival by a dual mechanism” in which ERK 
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phosphorylates one pro-apoptotic protein, deactivating it and thereby suppressing 

apoptosis, and phosphorylates one anti-apoptotic transcription factor, suppression of 

which “triggers apoptosis” (Bonni and others, 1999:1358,1361).  Logically, though ERK 

may not directly affect TNF secretion, inhibition of the ERK pathway would, in turn, 

result in inhibition of the anti-apoptotic factor and lead to apoptosis as seen in 

macrophages treated with LF (Park and others, 2002).  However, Bonni et al studied 

neurons, not macrophages.  Park et al specify that LF inhibits both the p38 and JNK 

MAPK paths, the two paths associated with inflammatory response and apoptosis 

(Herlaar and Brown, 1999:439); those results represent anthrax LF treatment of the 

J774A.1 cell line and bone marrow-derived macrophages.  In “MAP kinase activation in 

macrophages” from the January 2001 Journal of Leukocyte Biology, Krishna Rao states 

that “the activation of MAPKs seems to be different in cell lines compared with primary 

cells,” or even between macrophages from different tissues.  This is a possible reason for 

the differential susceptibilities observed in different species.  Rao recommends against 

extrapolation from cell lines, such as RAW264.7, to primary cells, such as the human AM 

(Krishna Rao, 2001:3).  However, data for signal transduction and cytokine secretion by 

the human alveolar macrophage are rare. 

Each investigator used a different experimental set-up.  Nick et al used murine 

alveolar macrophages, while Kraatz et al used murine peritoneal macrophages and seems 

to support Nick et al.  Park et al and Zhu et al studied cell lines and conflicted with Nick 

et al and Kraatz et al.  It is possible that Park’s p38 inhibitor did not successfully inhibit 

all p38 isoforms (Nick et al claimed theirs to be the “most selective and potent” to date); 
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or Nick’s inhibitor may also inhibit redundant MAPK pathways, such as JNK (nearly 

three years later, Park’s may be more selective), leading to TNF-α gene expression.  Park 

et al and Kraatz et al used the same inhibitor and may have observed different effects due 

solely to the difference between cell types.  Factors such as repeat stimulation used by 

Kraatz et al or simple methods of treatment may have also influenced the results.  Zhu et 

al and Chen et al stimulated the same macrophage cell line using LPS, but only one found 

that ERK was activated.  “All three MAPKs have been shown to undergo activation in 

several macrophage cell types using a variety of stimuli, [and] the response appears to be 

context-specific” (Krishna Rao, 2001:7).  Anthrax lethal factor has been widely accepted 

as the main virulence factor of BA, and though the complete mechanism is not 

understood, the main cytotoxic activity is the non-selective cleavage of nearly all 

MAPKK isoforms.  Adding that all terminal MAPKs have the potential to affect human 

AM microbicidal response, all forms of MAPKs should be considered when modeling 

cell response. 

 
Anthrax Evasion of Immune Response 

Inhalational anthrax in the U.S. has historically had a mortality rate of over 85%, 

but many cases included in this figure occurred prior to development of modern medical 

facilities and antibiotics available during the intentional 2001 postal attacks, which 

resulted in five deaths among the eleven inhalational cases, or a 45% mortality rate 

(USAMRIID, 2005:37).  The majority of natural inhalational infections during the 

twentieth century were from occupational activities, occurring among wool sorters in 

textile mills, goat hide and hair processing workers, and tannery workers (Inglesby and 



 

 27  

others, 1999:1736).  Unique from the long-recognized cutaneous form, inhalational 

anthrax was even known historically as Woolsorters’ disease due to its prevalence among 

this high-risk population (USAMRIID, 2005:36).  As described in the introduction, 

respirable spores are quickly bound and phagocytosed by AMs, which begin transferring 

the spores from the lung to the mediastinal lymph nodes.  Despite the microbicidal 

attacks of the leukocytes, BA spores may survive for up to 60 days before they germinate 

into vegetative bacteria and may possibly multiply inside the macrophages (Chakrabarty 

and others, 2006:4430; Park and others, 2002:2048; Guidi-Rontani and others, 1999:13).  

In the lymph nodes, the vegetative bacteria proliferate and produce anthrax toxin (AT), 

“leading to hemorrhage, edema, and necrosis” in the infected tissue (Inglesby and others, 

1999:1737-1738; Heymann, 2004:20-22).  After an incubation period generally lasting 

one to six days, a generic illness manifests with flu-like symptoms of fever, fatigue, 

headache, mild cough, and nausea.  A correct diagnosis is further complicated due to an 

examination of the lungs typically being normal in this early stage.  However, once the 

disease progresses victims exhibit the characteristic mediastinal widening (Figure 2), 

often also with pleural effusion (USAMRIID, 2005:37).  After approximately two to five 

days, the non-specific symptoms may improve briefly only to be followed abruptly by 

severe respiratory distress. “Septicemia, shock and death usually follow within 24-36 

hours after onset of respiratory distress unless dramatic life-saving efforts are initiated” 

(USAMRIID, 2005:37).  In Figure 2, a radiograph from the CDC Public Health Image 

Library, the white areas indicated by the arrows show the classic signs of mediastinal 
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widening and pleural effusion in an inhalational anthrax victim less than a day before 

succumbing to the systemic bacterial infection and toxins. 

 Instead of preventing the infection, macrophages play the critical role of facilitator 

by allowing a BA bacterium to evade the immune response and progress to a systemic, 

lethal disease.  The ability of BA to effectively subvert a macrophage’s normal protein, 

enzyme or genome functions to evade the cellular immune response are not unique to the 

macrophage.  BA also exerts MAPK pathway inhibition in dendritic cells, vigorous 

phagocytes and antigen presenting cells (APC) like the macrophage but with a smaller 

population, better ability to migrate to the lymph nodes, and a more potent T-cell priming 

ability; in T-cells, adaptive immune lymphocytes that promote the overall immune 

response, kill exogenic microorganisms through specialized antigen recognition, and 

provide long-term immunity; and B-cells, adaptive lymphocytes that produce antibodies 

in response to antigens (Baldari and others, 2006:437-439).   

• In a dendritic cell (DC), anthrax toxin up- and down-regulates the production 

of different interleukins, which are cytokines secreted to mediate lymphocyte 

response, and inhibits the production of TNF-α (Tournier and others, 

2005:4938-4940).  When MAPK signaling is disrupted by LT, DCs “do not 

upregulate co-stimulatory molecules, secrete greatly diminished amounts of 

proinflammatory cytokines, and do not effectively stimulate antigen-specific T 

cells in vivo” (Agrawal, 2003:329).  The DC response is effectively dampened 

such that it is unable to respond to stimuli.  



 

 29  

• Two studies recently showed that T-cells fail to produce IL-2 due to LT 

inhibition of MAPK signals.  One study found that LT caused inhibition of T-

cell proliferation; LT was so selective in its attack on MAPK intermediates 

that the researchers even proposed LT be used as a MAPK signal inhibitor in 

investigating other signal pathways (Fang and others, 2005:4970-4971).  

Using a mouse (murine) model in vitro, the second T-cell study showed that 

IL-2 inhibition directly resulted in failure of cell activation and identified two 

of the three main MAPK sub-families, which are discussed below, as the 

primary targets of the toxin (Comer and others, 2005:8278-8279). 

• “Anthrax LT treatment causes severe B cell dysfunction” at “picomolar 

concentrations in vivo and sublethal doses in vitro”; LT causes “markedly 

diminished capacity to proliferate and produce” immunoglobulin-M (IgM) in 

response to stimuli (Fang and others, 2006:6155). 

While recent work has shown that DCs also transport anthrax spores to the lymph nodes 

(Cleret, 2007:7994), activated AMs have been shown to inhibit the migration of DCs to 

the lung (Jakubzick, 2006:3582) and the antigen presenting function of naïve and mature 

resident pulmonary DCs (Holt and others, 1993:404).  Further, analysis has shown that a 

threshold particle exposure must first be reached to induce phagocytosis of particulates by 

pulmonary DCs; and AMs that engulf respired particulates still outnumber DCs by more 

than two orders of magnitude (Jakubzick, 2006:3578,3581).  While macrophages may be 

less efficient at transport to the lymph nodes, DCs are outnumbered and depend on 

macrophages for chemotaxis and activation.  The focus in anthrax pathogenesis research 
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centers on the effects of LT or LF on macrophage MAPK signal transduction because 

macrophages fill this significant role in the early response to and transportation of the 

inhaled spores and in initiating the full innate and adaptive immune response. 

“In order to understand how anthrax evades the innate immune response and to 

gain insight into why inhalation anthrax is so lethal, it is critical to dissect the complex 

interactions between B anthracis and macrophages” (Banks and others, 2005:1180).  The 

article by Park et al reported on the “causal relation between dismantling of MAPK 

signaling and LT-mediated toxicity” (Park, 2002:2048).  Macrophage cell lines were 

treated with LPS or with lipoteic acids, an activator derived from Gram-positive bacteria.  

Both activators induce multiple MAPK pathways, including the three main sub-families: 

ERK, p38 and JNK.  Protective antigen was added to facilitate LF entry into the cells.  At 

a 200 ng/mL concentration, LF caused rapid apoptosis in LPS-activated macrophages and 

no observed apoptosis in non-activated cells.  At the same concentration, LF was also 

found to inhibit p38 and JNK1 MAPKs.  “Using inhibitors that are selective for each 

MAPK cascade,” a portion of this LT-induced inhibition was simulated for each of the 

three MAPK modules individually (Park and others, 2002:2049).  The p38 inhibitor was 

the only one to cause LPS-activated macrophage apoptosis similar to LF.  Macrophage 

mutants were then designed to express p38-activating MAPKKs (E2) that are not 

recognized for cleavage by LF.  LPS-treatment of these mutants showed “considerable 

resistance to LF-induced apoptosis” but no resistance to the p38-specific inhibitor, 

leading to the conclusion that apoptosis following introduction of lethal toxin is 

dependent the ability of the macrophage to produce p38 (Park and others, 2002: 2049).  
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Polymerase chain reaction (PCR) DNA analysis determined that p38 MAPK inhibition by 

both LT and the p38-specific inhibitor resulted in failure of the macrophages to express 

genes for IL-1 isoforms α and β.  IL-1 cytokines trigger production of IL-2 in T cells as 

well as the general inflammatory response.  Further, PCR revealed that LT suppressed 

TNF-α gene transcription and, unlike Kraatz et all and Nick et al, that the p38-specific 

inhibitor did not suppress expression of TNF-α genes (Park and others, 2002:2050).  The 

majority of studies indicate that TNF-α is the product of multiple MAPK pathways, of 

which p38 is only one, but all of which are inhibited by LT.  Further, in tests that were 

able to insert LF into cells without the use of PA, LF alone “was cytolytic for the 

sensitive macrophages while resistant cells were unaffected,” leading to the conclusion 

that “lethal factor by itself possesses the toxic activity of lethal toxin” (Friedlander and 

others, 1993:245).  Echoing most current literature, Park and others conclude that 

Bacillus anthracis uses MAPK inhibition to manipulate a macrophage activation signal 

into “a trigger of rapid cell death,” thereby preventing “the secretion of chemokines and 

cytokines that alert the remainder of the immune system to the presence of the pathogen” 

and releasing vegetative bacteria into the lymph and circulatory systems to proliferate and 

cause systemic toxigenic effects and bacteremia (Park and others, 2002:2051). 

The biochemical mechanism by which the MAPK cascades are inhibited is very 

well documented in the literature.  LF is a protease, or proteinase, that cleaves the 

MAPKK (E2) near the amino-terminus of the protein with such catalytic efficiency that 

“proteolysis of MAPKK1 was observed within 15 min with as little as 2 ng of LF per  

200 ng MAPKK1” (Duesbery and Vande Woude, 1999:291).  The MAPK/ERK kinases 



 

 32  

(MEKs) MEK1 and MEK2, which activate the ERK family; MEK3 and MEK6, which 

activate p38 MAPKs; and MEK4 and MEK7, which activate JNK isoforms, have all been 

confirmed as targets of the proteolytic action of LF (Pellizzari and others, 1999:199; 

Vitale and others, 2000:739; Bardwell and others, 2004:574-575).  Interestingly, two 

potential cleavage sites exist for MEK4 and MEK7, one of which resembles but is not a 

docking site for MAPK recognition and phosphorylation (Bardwell and others, 

2004:576).  The regions of MAPKKs recognized by LF have even been identified via 

testing cells with engineered point mutations in MEK1 and MEK6.  The cleavage of the 

MEK1 “was found to reduce not only the affinity of MEK1 for its substrate…but also its 

intrinsic kinase activity” (Chopra and others, 2003:9402).  The E1-level terminal kinases 

that regulate cell function and cytokine expression can no longer be phosphorylated 

because lethal factor’s “removal of the amino terminus of MAPKKs eliminates the 

'docking site' involved in the specific interaction with MAPKs” (Vitale and others, 

1998:706).  The strong evidence of LF-induced apoptosis has led to research on the use of 

LF as a therapeutic agent.  A study funded by the National Cancer Institute showed 

melanoma cell apoptosis via treatment with both LT and MAPKK inhibitors and even 

documented “tumor regression without apparent side effects” in mice (Koo and others, 

2002:3052).  The literature is thus found to support this effort of developing an initial 

host-pathogen systems biology model based on MAPKK cleavage by anthrax LF 

resulting in alveolar macrophage apoptosis. 
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System Biology and the Host-Pathogen Model 

“The emergence of systems biology signals a shift of focus away from molecular 

characterization of the components in the cell to an understanding of functional activity 

through the interactions in molecular dynamics” (Cho and Wolkenhauer, 2003:1503).  

Though systems biology (SB) literature has increased significantly in the last decade, the 

application to the doubly-dynamic host-pathogen system is still a nascent, novel approach 

within the microbiology and systems disciplines (Musser and DeLeo, 2005:1461).  

However, recognizing the uniqueness of modeling infectious diseases, the term host-

pathogen systems biology already appears to be well established in the SB community.  

Of course, though traditional microbiological studies of pathogens have occurred for 

more than a century, much more modern laboratory research on all the relevant 

biomolecular components and their individual relationships is still necessary to provide 

an adequate aggregate of data for increasingly detailed computational biological models.  

Until then, a number of assumptions must be made to turn disjointed, limited and 

possibly disparate data on molecular mechanisms into testable predictions of system 

(organism) behavior.  In a 2005 review from the American Journal of Pathology titled 

“Toward a Genome-Wide Systems Biology Analysis of Host-Pathogen Interaction in 

Group A Streptoccoccus,” Musser and DeLeo state: 

Analysis of the molecular pathogenesis of infectious disease by a systems biology 
approach is especially complicated, in part because pathogens are highly diverse 
genetically, multiple phases of the infectious process can be prolonged and 
anatomically distinct (e.g. multiple organs), and host immune responses are 
multiphasic. (Musser and DeLeo, 2005:1463) 
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As previously discussed, the benefits of SB modeling include the identification of 

possibly incorrect theories on causality or recognition of dynamic features that cannot 

otherwise be observed.  While the process may seem unwieldy, Musser and DeLeo assure 

researchers that each iterative step of model building and experimentation will provide 

new insight.  The understanding of gene expression and biomolecular associations can be 

increased simultaneously with and through understanding the underlying, mechanistic 

biological behavior. 

 As implied by the title of the article by Musser and DeLeo, a focus on genome-

wide analysis using massive data sets exists in the SB literature from research institutes 

and established laboratories.  Made possible by advances in genomics and proteomics 

over the last decade, such models are built from the gene up and tested to see which genes 

or proteins might have a role in pathogenesis.  Several reviews on this type of SB 

application to drug discovery have been published in the last few years (Cho an others, 

2006; Davidov and others, 2003; Apic and others, 2005).  A model of signaling in cancer 

cells contained 326 molecular components, referred to as nodes in the model, and 892 

chemical relationships between the components.  Despite high genetic variability in 

cancer cells, the researchers were able to conclude that “clear patterns of oncogene-

signaling collaborations emerge recurrently at the network level” by applying the holistic 

SB approach to the signal transduction data (Cui and others, 2007:1).  An even larger 

modeling effort investigated apoptosis through signaling, using multiple stimuli as input 

and cytokine production as output for the model, and integrated a massive 7980 signals 

with 1440 apoptosis-related responses.  By varying two extracellular stimulants, the JNK 
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MAPK path was found to have a dynamic “four-dimensional signal-response” 

relationship to apoptosis.  Three stimulants and nearly 8,000 signals results in 660 

dimensions and an unsolvable matrix of coefficients (Janes and others, 2005:1647-1649).  

The model was simplified through partial least squares regression and still maintained the 

ability to predict 12 apoptosis outputs with multiple stimuli.  Combining in vitro lab 

experimentation with a “data-driven” systems approach revealed two opposing signal 

clusters, one pro-death and one pro-survival, that “capture the dynamic intracellular 

signal processing of diverse stimuli, including autocrine-feedback circuits” (Janes and 

others, 2005:1653).  The previously unknown involvement of autocrine signaling is an 

excellent example of how using a holistic systems approach can identify features that 

otherwise could not be observed within such a dynamic system.  These research efforts, 

combined with continuing advancement in genomics and proteomics technologies that 

facilitate faster and more accurate data collection, provide a positive outlook for the 

future of SB modeling.  Unfortunately, at this time they are still limited in application due 

to limits in available data and computational methodologies. 

 However, host-pathogen models can take a “top down” approach that focuses on 

a specific signal or cell of interest, addresses a specific problem, and does not demand 

intensive data collection (Forst, 2006:221).  To advance knowledge signal transduction in 

a dynamic network, instead of traditional, linear, non-dynamic statistical correlations, 

mechanistic analysis of reaction kinetics by nonlinear ordinary differential equations is 

the preferred quantitative modeling method (Cho and Wolkenhauer, 2003:1405; Forst, 

2006:222; Smith, 2005:53; You, 2004:172).  Top-down, kinetic models are often simple 
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and based on a number of assumptions such as the ‘mixed model’ where an enzyme’s 

chemical concentration within the cell is considered homogeneous throughout, though in 

reality concentrations vary by compartment and by location within a compartment.  Such 

simplifications do have precedent in successful, widely-accepted toxicological modeling 

applications such as the systems dynamics-based physiologically-based pharmacokinetic 

(PBPK) modeling, in which the instant mixing and homogeneous chemical concentration 

assumptions are made at the tissue scale.  To achieve a more accurate dose-response 

model, toxicologists should shift away from the paradigm of linear regression of dose-

response data and toward integrating increasing details of signal and biochemical 

interaction.  To do this, toxicologists must work toward understanding “the underlying 

biology prior to evaluating the perturbation of the system following chemical exposure” 

(Andersen and others, 2005:328-329).  This report attempts to develop the understanding 

of biomolecular pathogenesis in inhalational anthrax by implementing a host-pathogen 

systems biology model using published, parameterized mathematical models of the 

MAPK cascade as the foundation. 

 
Published MAPK Models 

 As one of the most significant signal path families, the MAPK cascade has been 

thoroughly studied in both wet and dry laboratories, in vivo, in vitro, and in silico.  A 

number of authors have published SB models of MAPK signal transduction with varying 

levels of complexity.  The models were selected for review and implementation based, 

first, on availability of completely parameterized models in the BioModels Database and, 

second, on variation presented in the model.  BioModels Database is repository of 
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mathematical biological models that are intended to be shared through the Internet 

(http://www.ebi.ac.uk/biomodels) for the promotion of research.  The database is 

administered by the European Molecular Biology Laboratory’s European Bioinformatics 

Institute (EMBL-EBI) in England.  EBI is an academic non-profit member of the EMBL 

group, an international organization established in 1974 that now includes five research 

centers throughout Europe.  Previously, EBI has also been funded in part by the Defense 

Advance Research Projects Agency (DARPA) of the U.S. Department of Defense. 

As with most modeling of dynamic systems, models should not be too large in 

scope so as to encompass components irrelevant to the feature being investigated.  Thus, 

the selection begins with early, more simple models that identify unique characteristics of 

MAPK signaling such as ultrasensitivity, which allows a very quick and strong output 

response to a very small stimulus, and oscillatory behavior in the signal output, activated 

MAPK.  The third model includes the relationship between MAPK enzymes and scaffold 

proteins, which bind enzymes in a signal sequence to increase selectivity and decrease 

‘cross-talk’ interference between different pathways.  Scaffold proteins may exist to 

decrease system nonlinearity and thereby “lead to elimination of sustained oscillations” 

(Kholodenko, 2000:1587). 

Ultrasensitivity Model. 

Huang and Ferrell may have been the fist to apply computational modeling to the MAPK 

cascade in their paper “Ultrasensitivity in the mitogen-activated protein kinase cascade,” 

which was published in the September 1996 Proceedings of the National Academy of 

Sciences, now simply known as PNAS.  The ultrasensitivity model follows the simplified 
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MAPK cascade structure, as shown in Figure 4.  The figure includes added annotations -P 

and -PP, which represent the singly and doubly phosphorylated MAPKK and MAPK, and 

P’ase, an abbreviation for the phosphotases that dephosphorylate both the singly and 

doubly phosphorylated forms of MAPKK and MAPK (Huang and Ferrell, 1996:100078).   

The kinetic equations in this model explicitly depict the double phosphorylation for 

activation of the intermediate and terminal kinases.  This is accomplished, for instance, 

by including the bound MAPK/MAPKK-PP complex that produces MAPK-P, the 

MAPK-P/MAPKK-PP complex that produces the fully active MAPK-PP, and each of the 

singly and doubly phosphorylated kinases formation in the bound state with its respective 

 

 
Figure 4: Schematic of MAPK cascade for ultrasensitivity model 

(after Huang and Ferrell, 1996) 
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phosphotase, such as the MAPK-PP/MAPKP’ase complex that results in deactivation of 

the kinase to MAPK-P.  The stoichiometric, chemical equations listed in Huang and 

Ferrell (1996) show the detailed association and disassociation reactions for each 

enzyme-substrate pairing; the article also includes the time-dependent differential 

equations.  Huang and Ferrell were able to predict that MAPK would “behave like a 

highly cooperative enzyme, even though it was not assumed that any of the enzymes in 

the cascade were regulated cooperatively” (Huang and Ferrell, 1996:100078).  

Cooperative behavior arises from having multiple binding sites, for which binding of one 

affects activity of another, and results in a sigmoidal or S-shaped curve, meaning 

behavior does not follow Michaelis-Menten (MM) kinetics (Figure 5).  Ultrasensitivity in 

cooperative enzymes is measured by the Hill coefficient, nH.  The Hill coefficient equals 

one for the MM kinetic model and approximately five for the ultrasensitive MAPK 

cascade (Ferrell and Machleder, 1998:896).  As the term implies, an ultrasensitive signal 

is able to react to much smaller changes in the concentration of ligands, the extracellular 

molecules that bind with membrane receptors to initiate the signal.  For Michaelian 

enzymes where nH = 1 “there must be an 81-fold change in ligand” concentration to 

increase “from 10%...to 90% maximal enzyme activity,” whereas a non-MM, 

“cooperative enzyme with a Hill coefficient of 4 can give the same enzyme activity 

change with only a 3-fold variation in ligand concentration” (Goldbeter, 1981:6444).   

Huang and Ferrell were subsequently able to validate the model’s prediction of 

ultrasensitivity via an in vitro experiment in which the MAPK activity was measured in 

Xenopus (frog) oocytes.  Like the predicted curve, the empirical sigmoidal curve for  
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Figure 5: Ultrasensitivity model-predicted and observed kinase activation levels (in vitro 
data from Xenopus oocyte extracts) (modified from Huang and Ferrell, 1996) 
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MAPK was found to be much steeper than for an enzyme following normal Michaelis-

Menten kinetics.  The authors predicted and then confirmed the all-or-none, switch-like 

behavior known as ultrasensitivity in the MAPK cascade.  The kinase activity levels 

presented in Figure 5 represent the steady-state activity at varied concentrations of a 

cascade stimulant.  The time-dependent active MAPK output of the ultrasensitivity model 

is shown in Figure 6, in which it can be seen that the steady-state activation is reached in 

only 60 seconds.  Ultrasensitivity increases with the number of intermediates in the 

cascade.  This may explain why MAPKs have more steps in the activation chain than 

most other signal pathways and why MAPK signaling is “particularly appropriate for 

mediating processes like mitogenesis…where a cell switches from one discrete state to 

another” (Huang and Ferrell, 1996:100078).  Because a macrophage would be activated 

during the process of binding and engulfing the spore, LF-induced inhibition of MAPK  

 

 
Figure 6: Ultrasensitivity model output 

(PP_K is MAPK-PP, P_K is MAPK-K, and K is MAPK)  
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activation would likely not affect response sensitivity but would slowly ‘switch off’ the 

activation signal as MAPKKs are depleted. 

Oscillating Negative Feedback Model. 

In “Negative feedback and ultrasensitivity can bring about oscillations in the 

mitogen-activated protein kinase cascades” from the 2000 European Journal of 

Biochemistry, Kholodenko demonstrated that the MAPK signal would oscillate due to 

ultrasensitivity combined with a negative feedback loop in which the terminal MAPK 

(E1) inhibits activation of the MAPKKK (E3).  Kholodenko refers to Huang and Ferrell 

as having a similar cascade structure; the schematic, shown in Figure 7, also uses the  

 

 
Figure 7: Schematic of MAPK cascade with feedback loop (after Kholodenko, 2000) 
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same annotations for the enzyme activation states.  However, this schematic denotes 

MAPKKK (E3) as MKKK and shows MAPKKK to be activated at the cell membrane by 

one phosphorylation from Ras, which is otherwise termed MKKKK by the kinase naming 

convention.  While adding the negative feedback relationship between activated MAPK 

(MAPK-PP) and Ras, Kholodenko excludes the phosphotases that were included in the 

kinetic equations by Huang and Ferrell.  Because “in vitro enzymatic studies have shown 

that dual-specificity kinases (MEK1) follow the Michaelis-Menten mechanism,” 

Kholodenko applied MM kinetics in his differential equations (Kholodenko, 2000:1584).  

In another deviation from Huang and Ferrell’s model, the kinetic equations are developed 

without regard to the transient kinase-to-kinase and kinase-to-phosphotase intermolecular 

complexes experienced during kinase activation and deactivation, respectively.  Robinson 

and others developed and implemented a first attempt to model the LF-MAPKK 

interaction using Kholodenko’s model, which was selected for being the most simple 

model available (Robinson and others, 2007).  That initial anthrax host-pathogen model, 

which was presented in the poster session of the 5th Annual American Society for 

Microbiology (ASM) Biodefense and Emerging Diseases Research Meeting in 2007, 

provided the precedent for this research effort. 

 Kholodenko’s significant contribution is the negative feedback loop in which the 

active MAPK inhibits Ras activation through phosphorylation.  As a result, an increasing 

concentration of active MAPK results in decreased production of more active MAPK.  As 

MAPK then decreases in concentration, stimulation at the cell membrane overcomes the 

inhibition; this causes MAPK-PP concentrations to begin to increase again.  Eventually, 
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the concentration again affects inhibition, and the oscillatory cycle repeats as depicted in 

Figure 8.  The oscillation of MAPK-PP levels was a model-derived prediction by 

Kholokenko, and that prediction has been reported as being observed in the laboratory by 

other researchers (Sauro and Kholodenko, 2004:26).  The removal of the stimulus that 

generates the switch-like response would result in damped oscillations, until steady-state 

is reached by the system output.  Of course, due to phosphotase activity on the active 

MAPKs, LF would continue to inhibit active MAPK such that, unlike a cessation of 

stimulation, it falls below baseline levels required for cell function regulation.  

MAPK Model with Scaffold Proteins. 

 In the same year as the publication of the oscillatory model in the Europe, 

Levchenko, Bruck and Sternberg published a MAPK model in the United States under the  

 

 
Figure 8: Feedback model output showing MAPK-PP oscillations 

(after Kholodenko, 2000) 
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title “Scaffold proteins may biphasically affect the levels of mitogen-activated protein 

kinase signaling and reduce its threshold properties” in PNAS.  Scaffold proteins “serve 

as organizing centers for signal transduction because they can bind several members of a 

signaling cascade to form a multimolecular complex” (Levchenko and others, 

2000:5818).  The model was built to demonstrate that “formation of scaffold–kinase 

complexes can be used effectively to regulate the specificity, efficiency, and amplitude of 

signal propagation” (Levchenko and others, 2000:5818).  The bound complexes of 

scaffold proteins and kinases are in the model equations as unique chemical species, but 

in a non-transient form, unlike the kinase-phosphotase complexes used by Huang and 

Ferrell.  Simplified diagrams of the postulated scaffold-kinase complexes are shown in 

Figure 9; only the transitions for the unbound scaffold are shown (solid arrows) for 

clarity.  The scaffold-facilitated reactions are denoted on the bottom of Figure 9 by the 

dashed arrows.  Some MAPKKs (the E2 level) have even been found to act in both the 

role of a kinase and a scaffold protein.  Due to the high number of nodes (86 kinases, 

kinase-kinase complexes, kinase-phosphotase complexes, and scaffold complexes, with 

three states of kinase phosphorylation) and reactions (300), a schematic of the scaffold 

model is too large and intricate to be presented here. 

The scaffold model includes the kinase-deactivating phosphotase components like 

Huang and Ferrell, but referencing early works on biochemical ultrasensitivity and MM 

kinetics (Goldbeter and Koshland, 1981, 1984), Levchenko et al instead apply M-M 

kinetics like Kholodenko.  Modeling MAPK complexes with a generic scaffold protein 

shows that scaffold proteins “can substantially increase the signaling output”; but 
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Figure 9: Examples of kinase-scaffold protein complexes and transitions 

(‘K’ is MAPK, ‘KK’ is MAPKK, and ‘P’ is a phosphate group on a kinase) 
(modified from Levchenko and others, 2000) 

 
 
 

alternatively “if the scaffold concentration is greater than optimal, a significant decrease 

in signaling can occur” (Levchenko and others, 2000:5818).  Figure 10 reflects the output 

of MAPK-PP concentration over time using the scaffold protein model as downloaded 

from BioModels Database.  Figure 11 demonstrates this optimization concept through a 

graph of the model output with different concentrations of the two-kinase scaffold 

complex, where increasing two-member concentration increases kinase activity.  At some 

point a threshold is crossed and the 1 micromolar (μM) concentration results in a 

significant drop in MAPK-PP concentration that is lower than activity without scaffold 

proteins.  This may present a reason why analysis of some kinases in scaffold complexes 

within the cytoplasm appear to be inhibited, perhaps because the scaffold limits kinase 
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Figure 10: Scaffold protein model output for active MAPK levels 

 

 

 
Figure 11: MAPK activation as a function of fully-bound scaffold concentration 

(modified from Levchenko and others, 2000) 
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enzyme mobility in the cytoplasm, compared to tests with purified, unbound enzymes.  If 

the concentration of the scaffold protein in the cytoplasm is over the optimal level, then 

the signal response is reduced below its potential; a reduction in the expression of the 

scaffold protein could increase the output beyond that possible in tests with unbound 

enzymes. 

 
Summary 

Macrophages eagerly ingest anthrax spores but, upon spore germination, are 

disabled by the LF inhibition of MAPK signal transduction, resulting in accelerated 

programmed cell death and a failure to activate the full immune response.  Though 

variation exists between MAPK activations and subsequent effects, macrophage 

apoptosis depends on multiple pathways, and LF is known to inhibit nearly all MAPK 

pathways by cleaving MAPKKs, the E2 intermediates.  Combining published systems 

biology models of the MAPK cascade with laboratory data for cell viability of 

macrophages cultured with LT-producing strain of anthrax, a model of the host-pathogen 

dynamic system is feasible.   
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III.  Methodology 
 
 

Overview 

All models have been developed from published, fully-parameterized MAPK 

cascade models obtained through BioModels Database (http://www.ebi.ac.uk/biomodels), 

which facilitates systems biology research through the sponsorship of EMBL-EBI.  The 

following procedure, mostly derived from the procedure for a first attempt to model the 

LF-MAPK interaction by Robinson and others, was used to modify three models to 

include LF-induced cleavage of MAPKKs and to translate software-specific code for the 

parameters and equations (Robinson and others, 2007).  By varying the kinetic reaction 

rate constants defining the cleavage of MAPKKs by LF, the model output, which is the 

MAPK-PP concentration or MAPK activation level, was adjusted to fit empirical 

macrophage cell viability data for two LT-sensitive murine macrophage cell lines co-

cultured with a LT-producing strain of B anthracis. 

 
Model Development 

The models were downloaded from BioModels in Standard Biological Mark-up 

Language (SBML), an XML-based computer language developed explicitly for 

computational modeling of biological processes.  The SBML code was imported into 

JDesigner (version 2.0.41), a free, open-source program that was developed for systems 

biology modeling with the support of DARPA and the U.S. Department of Energy.  

Within JDesigner, each model was modified to add the chemical reactions accounting for 

the cleavage of MAPKKs (the E2 intermediate from Figure 1).  The catalytic reaction was 
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assumed to possess first-order linear kinetics; the kinetic constants for the reactions were 

initially approximated using the values from the initial effort by Robinson and others.  

The code of each model was then exported from JDesigner and modified, using the 

procedure described in Appendix B, to allow the code to be imported into Berkeley 

Madonna (version 8.3.11).  Berkeley Madonna is a general purpose differential equation 

solver developed by faculty at the University of California at Berkeley through the 

sponsorship of the National Science Foundation and National Institutes of Health.  

Thought not explicitly a systems biology modeling tool, Berkeley Madonna was selected 

for model implementation because it is a significantly faster ordinary differential equation 

(ODE) solver and because it allows variables to be more easily manipulated than 

JDesigner.  Berkeley Madonna is also the modeling program in use by the research 

sponsor, AFRL/RHPB.  The edited code that was run in Berkeley Madonna for each 

model is provided in Appendix C.  Though parameter values were varied in determining 

the effective reaction rate constants, the code reflects only one value per parameter. 

Chemical Reaction Kinetics. 

 All models were used in their published form, as downloaded from BioModels 

Database.  One exception occurred in the MM kinetic equations established by 

Kholodenko for the oscillating negative feed back model with regard to strength of the 

negative feedback.  The power in the first reaction rate equation in the oscillating model’s 

code, provided in Appendix C, determines the level of negative feedback, where n = 2 is 

approximately equivalent to cooperative inhibition (Kholodenko, 2000:1586).  (The 
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variable is ‘n’ in the published equations and is coded in the rate equation as the kinetic 

parameter ‘J0_n.’)  Both presentations of negative feedback power were investigated. 

As discussed in Chapter II, the literature is clear in statements that LF cleaves all 

MAPKK isoforms, with the one exception of MEK5.  However, nothing could be found 

in the literature regarding the possibility of LF reacting differentially with the three 

phosphorylation states of the E2 intermediate.  The phosphorylations occur at two amino 

acids among hundreds in the polypeptide chain, whereas LF recognizes a specific site 

adjacent to the N-terminus of the protein (Bardwell and others, 2004:576).  Each 

subsequent phosphorylation may affect the affinity and reactivity of LF with its 

substrates, via changes in diffusive or electrophoretic mobility of MAPKKs within the 

cytoplasm, but the available literature contains no analysis or even suppositions regarding 

proteolysis being dependent on phosphorylation or activation state.   

When a macrophage is challenged, the macrophage is activated, signaling 

initiates, and MAPKs are rapidly phosphorylated.  In the case of the ultrasensitivity 

model, biphosphorylation becomes the predominant state for MAPKKs; logically, LF 

would have to cleave the biphosphorylated, active MAPK in order to accomplish 

cytolysis via pathway inhibition.  In the negative feedback model output seen in Figure 8, 

the concentration of biphosphorylated MAPK, MAPK-PP, varies over a significant range 

of concentration (approximately 40 to 300 µM).  As a consequence of the negative 

inhibition exerted by MAPK-PP on activation of the initial, E1 level of the cascade, the 

concentrations of the three phosphorylation states of MAPKK also oscillate.  Within the 

third model, in which MAPKKs are bound to scaffold proteins, the mobility as a function 
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of the number of phosphorylations is presumably insignificant compared to mobility 

restrictions as a result of the scaffolds.  It is therefore assumed herein that LF reactivity is 

inclusive of all unphosphorylated, monophosphorylated and biphosphorylated MAPKK 

isoforms.  Because the rapid switch-like nature of MAPK activation and deactivation 

shows that all forms of kinases are readily accessed within the cytoplasm, and in the 

absence of data indicating otherwise, kinetic values for the three phosphorylation states of 

MAPKK were assumed to be equal.  Finally, one study has shown that MAPKKs 

continue to interact with and be phosphorylated by MAPKKKs at the start of the cascade.  

Active MAPKKs may also behave normally in other cellular interactions outside the 

MAPK cascade, but are only unable to recognize and bind with MAPKs due to the loss of 

the amino-terminus, which is part of the docking site (Paccani and others, 2005:329).  As 

suggested in the literature review, studies have shown reduced intrinsic kinase activity in 

addition to significant loss of interaction between MAPKK and its substrates as a result 

of proteolysis (Chopra and others, 2003:9402).   The models thus assume that all 

incomplete forms of MAPKK, regardless of activation state, are chemically no longer 

functionally MAPKKs due to the inability to activate MAPKs.   

All models were treated similarly with regard to implementing the first-order 

reaction kinetics for catalytic cleavage of MAPKKs by anthrax lethal factor.  Being 

produced by a bacterium in a phagosome within the macrophage, the chemical 

concentration of lethal factor was assumed to be sufficient for sustained catalytic reaction 

(Park and others, 2002:2049), therefore LF was not included in the models as a chemical 

species.  The equations for the three models all followed the same structure for a time-
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dependent ordinary differential equation, which is represented here using the traditional 

brackets around chemical species to denote concentration and using k as the variable for 

the reaction rate constant (Engel, 1977:15):  

 d[Cleaved MAPKKs]/dt = [Cleaved MAPKK] + [Cleaved MAPKK-P] (1) 
 + [Cleaved MAPK-PP] 

where, 

 [Cleaved MAPKK] = kKK [MAPKK] (2) 
 [Cleaved MAPKK-P] = kKKP [MAPKK-P] (3) 
 [Cleaved MAPK-PP] = kKKPP [MAPKK-PP] (4) 

Again, the three rate constants (k) for LF cleavage are assumed equal.  Each model 

applies different initial concentrations for the three MAPKK phosphorylation states based 

on the sources referenced in each respective publication.  A model node was added in 

JDesigner to represent the accumulated products of the three cleavage reactions, and the 

initial parameter value was assigned at the estimated 2.5e-4 s-1 established in previous 

model work (Robinson and others, 2007).  Following basic functional testing to ensure 

operability of the model in JDesigner, models were translated for import into and 

parameterization in Berkeley Madonna. 

In Berkeley Madonna, each model was manipulated and evaluated using 

procedures described in model-specific detail within the results.  The output for all 

models was the active terminal MAPK (MAPK-PP), for which concentration was plotted 

against time.  The behavior of the output was compared to data on the viability of two 

standard, LT-sensitive murine macrophage cell lines, RAW264.7 and J774.1, which were 

cultured for at least 15 hours with Bacillus anthracis-Vollum 1B (V1B), a virulent strain 
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of BA that produces LT and a “capsule that inhibits phagocytosis of vegetative BA” 

(Gutting and others, 2005).  The graphs in Figure 12 represent two separate experiments 

to assess cell death in two macrophage cell lines cultured with and without Bacillus 

anthracis-Vollum 1B.  While the two cell types shown are differentially susceptible to 

LT, the overall behavioral trend is similar, especially when considering error.  Fitting to 

the data for the two cell lines, each model was parameterized for first-order reaction 

constants for lethal factor’s catalytic reaction with MAPKKs. 

Ultrasensitivity Model. 

The ultrasensitivity model includes MAPKKs in a bound complex form 

(“BIOMD0000000009- Huang1996_MAPK_ultrasens,” 2007).   For instance, MAPKKK 

 

 
Figure 12: Macrophage viability when cultured alone or with V1B 

(modified from Gutting and others, 2005) 
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 (E3) interfaces with MAPKK (E2) to activate it; and this interaction is explicitly 

represented as a transient multi-molecular species (node) within the model.  Cleavage of 

LF substrates while bound to other macromolecules presented a problem: without a more 

complex kinetic model, a first-order reaction with MAPKK while bound would have also 

subtracted from the pool of the other complex member.  These transient species exist only 

during the recognition and phosphorylation of the kinase substrate or the 

dephosphorylation of the phosphotase substrate.  The available concentration and time for 

LF proteolysis of a MAPKK while in such a kinase-kinase or kinase-phosphotase 

complex are assumed to be minimal; therefore it was assumed that LF did not actively 

cleave the bound MAPKKs.  This assumption was validated after tuning the LF/MAPKK 

reaction kinetics to fit the J774A.1 cell line data.  Only doubly phosphorylated MAPKK 

exists in complexes at appreciable concentrations: the MAPKK-PP/MAPK complex 

peaks under 0.05 µM, and the MAPKK-PP/MAPK-P complex peaks under 0.09 µM 

(Figure 13).  For comparison, unbound MAPKK begins at 1.2 µM and is quickly 

activated, resulting in slightly over 0.8 µM MAPK-PP.  Thus, LF interaction with the 

transient MAPKK (E2) complexes was ignored. 

Oscillating Negative Feedback Model 

Minor modifications have been made for application of the negative feedback 

model and for comparison to the macrophage viability data.  The oscillation model 

downloaded from BioModels Database starts with an initial (t = 0) MAPK-PP 

concentration of 10 μM, so the absence of phosphotases in the model would result in a 

steady-state 10 μM concentration after damping of the oscillation via depletion of 
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Figure 13: Ultrasensitivity model’s low bound MAPKK complex concentrations 

 
 

MAPKKs (“BIOMD0000000010 – Kholodenko2000_MAPK_feedback,” 2007).  This 

may not be optimal for simulating inducement of apoptosis if the baseline value is 

sufficient to sustain inhibited functions to be modeled later.  The model output published 

by Kholodenko, shown Figure 8, shows an initial MAPK-PP concentration of zero; 

another published figure (not shown) related to evaluation of the effect of cooperative 

inhibition does show an initial concentration of 10 μM for MAPK-PP.  To permit full 

deactivation of the active MAPK pool by phosphotases, the initial MAPK-PP 

concentration was changed to zero (coded as “init MAPK-PP = 0” as shown in Appendix 

C).  Second, the cell viability data from Figure 12 have been time-shifted by 5 hours to 

take into account the time required for germination and gene expression prior to the 

production of LT.  The first data point at the five-hour point has a cell viability of 100% 

and, for the purposes of the model, is reset to t = 0 because LT-induced inhibition of 
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MAPKs begins immediately.  Finally, as stated above, the MM kinetic parameter for 

power of the negative feedback loop, n, was varied as shown in publication. 

 The presence of oscillations had to be accounted for in the process so that the 

average MAPK-PP concentration could be fit to the data.  The model was run as a MAPK 

signal model without the presence of LF so that the natural oscillations could be 

observed.  Because the active MAPK effectively ‘spends more time’ at the oscillation 

peaks than at the minimums, the average is weighted toward the peaks.  The numerical 

output was exported from Berkeley Madonna; the peak, minimum, and average active 

MAPK concentrations were determined using Microsoft Excel 2003.  The average 

MAPK without LF-induced MAPKK cleavage was graphed as equivalent to the 100% 

macrophage viability.  As seen in the results, respective fractions of the average were 

applied as appropriate for each cell line and negative feedback loop strength combination. 

MAPK Model with Scaffold Proteins 

Like the ultrasensitivity model, the scaffold facilitated model involves 

biomolecular complexes between kinases, phosphotases, and scaffold proteins 

(“BIOMD0000000014 – Levchenko2000_MAPK_scaffold,” 2007).  The scaffold protein 

complexes, however, are not assumed to be transient and limited in concentration relative 

to unbound targets of the toxin.  Following the same argument for the ultrasensitivity 

model, where reaction with bound kinases would also deplete the scaffold proteins, the 

interaction of LF with the bound MAPKKs was ignored.  This presents a significant 

limitation in applying this model to LF cleavage of MAPKKKs due to the model focusing 

on the promotion of kinase activation via these sustained complexes.  Because the 
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catalysis cannot be applied to a significant portion of the MAPKK population in the 

model, the kinetic constants applied to the unbound forms will be overestimated to 

compensate. 
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IV.  Analysis and Results 
 
 

Chapter Overview 

Each MAPK cascade model was modified to include LF proteolysis of MAPKKs 

via a first-order reaction.  The model output, active MAPK, was plotted, and the kinetic 

reaction rate constants for the cleavage of MAPKKs was parameterized to fit the in vitro 

data for the RAW264.7 and J774A.1 macrophage cell lines (Figure 12).  The models 

designed around the ultrasensitivity and negative feedback characteristics were able to be 

manipulated to fit the cell viability data, and for the latter the strength of the feedback 

loop was evaluated in relation to the laboratory results.  Unfortunately, the scaffold 

protein model proved to be a poor model for investigating LF-induced inhibition of the 

MAPK cascade.  The model was only unable to provide a fit for the J774A.1 viability 

data and resulted in a high cleavage rate estimate for the RAW macrophage cell data; 

both are likely due to the limitations of the model imposed by the binding of MAPKKs to 

scaffold proteins. 

 
Results of Simulation Scenarios 

Ultrasensitivity Model 

The ultrasensitivity model results in an S-curve of the MAPK activation and 

quickly approaches steady-state (Figure 6).  Though still present, the switch-like response 

to the bacterial stimulus is not perceptible in the output due to the time scale of the 

anthrax incubation (15 hr).  At first glance, the ‘reverse’ S-curve showing inhibition of 

MAPK activation appears to match the behavior of the J774A.1 macrophage viability plot 
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better than the inverse shape of the RAW264.7 viability plot.  However, it should be 

noted that the RAW viability at 10 hr in Figure 12 shows a lower bar of the range or error 

at approximately zero; this indicates that the actual behavior of the RAW cell line when 

incubated with LT-producing BA may be closer to that of J774A.1 cells than implied by 

the simple linear data point connectors in Figure 12.  Additionally, the error bars plotted 

represent the standard error of the mean (SEM) instead of standard deviation (SD) with a 

confidence interval.  According to a report on misuse of the SEM in biomedical research: 

Authors often use the [SEM] to describe the variability of their sample… As the 
SEM is always smaller than the SD, the unsuspecting reader may think that the 
variability within the sample is much smaller than it really is… The SD tells us 
the distribution of individual data points around the mean, and the SEM informs 
us how precise our estimate of the mean is.  It is therefore inappropriate and 
incorrect to present data only as the mean (SEM)… The use of the SEM should be 
limited to inferential statistics where the author explicitly wants to inform the 
reader about the precision of the study. (Nagele, 2001:514) 

 
Given that the SEM range is very near to zero and that an SD-derived confidence interval 

would likely result in a larger range, a viability of zero is therefore assumed to be within 

the confidence interval.  With parameters set according to the code in Appendix C and 

with all three reaction constants for LF cleavage assumed equal, parameterizing to fit the 

in vitro data for RAW264.7 results in a reaction rate of 2.95e-4 s-1 (Figure 14).  The curve 

has 25% activation at 2.5 hours (9,000 s), per the in vitro analysis, and near-zero 

activation at 5 hours (18,000 s), which is within the range of error. 

 The kinetic parameters for LF reactivity in the J774A.1 cell line were more easily 

obtained.  The range of error for the 5-hour data point (10-hour point in Figure 12, minus 

the 5-hour shift), using SEM, is approximately 40% to 60%.  This corresponds to first- 

order constants of 1.2e-4 s-1 to match 50% viability at 5 hr (18,000 s), with a range of 
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Figure 14: Ultrasensitivity model parameterized to fit RAW264.7 in vitro data (dots) 

 
 
 
1.1e-4 s-1 for 60% viability up to 1.3e-4 s-1, for 40% viability.  Corresponding to the in 

vitro data, the fit for 40% viability at 5 hours (18,000 s) also corresponds to a near-zero, 

1% viability at 10 hours (36,000 s) (Figure 15).  The data for both cell lines is provided in 

Table 2 following discussion of the results for the other models. 

Oscillating Negative Feedback Model 

 The negative feedback model presents a challenge in that the average of the 

oscillations must be fit to the empirical cell line data.  Figures 16 and 18 illustrate the 

results of fitting the data using the non-competitive inhibition model where n=1, for 

which results in an oscillation peak at about 287 µM and a minimum around 36 µM, 

giving an initial amplitude of 125 and, due to the oscillation spending more time at the 

peaks than the valleys, an average of about 184 µM prior to MAPK inhibition.  The  
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Figure 15:  Ultrasensitivity model parameterized to fit J774A.1 in vitro data (dots) 

 
 

rate constant for the RAW264.7 data (Figure 16) with n=1 is 2.9 e-4 s-1, and the rate is 

1.2 e-4 s-1 for J774A.1 macrophages (Figure 17).  The stronger negative inhibition (n = 2) 

is applied in Figures 17 and 19 to give an oscillation peak near 288 µM and a minimum 

of about 9 µM, for an amplitude of approximately 140 and an average of 175 µM.  For 

n=2, the rate constant for the RAW264.7 viability data (Figure 18) is 2.3 e-4 s-1, and the 

rate is 9.5 e-5 s-1 for J774A.1 macrophages (Figure 19).  At a glance, Figures 17 and 19 

appear to demonstrate a better match to the data behavior due to having full loss of 

MAPK-PP (0% cell viability) at a later time point.  One might expect the stronger 

inhibition of the cascade’s initial activation step via the negative feedback loop to result 

in a more rapid loss of active MAPKs, but both outputs for increased negative feedback 

show more oscillations at 5 hours (18,000 s) and a later x-axis intercept.  Kholodenko  



 

 63  

 
Figure 16: Negative feedback model (n=1) fit to RAW264.7 data (dots) 

 
 
 

 
Figure 17: Negative feedback model (n=2) fit to RAW264.7 data (dots) 
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Figure 18: Negative feedback model (n=1) fit to J774A.1 data (dots) 

 
 
 

 
Figure 19: Negative feedback model (n = 2) fit to J774A.1 data (dots) 
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notes that an increase in kinase concentrations or in the MM kinetic parameter KM could 

cause the oscillations to transition to a stable state, but increased negative feedback 

allowed oscillations to reemerge (Kholodenko, 2000:1586).  This suggests that SOS 

(effectively an MKKKK) may be inhibited via double phosphorylation from MAPK 

(Kholodenko, 2000:1586), but the fit appears better for the confidence in the models, 

having been qualitatively fit to the data to determine the parameters, do not allow any 

conclusion regarding whether MAPK cooperatively inhibits SOS/MKKKK through 

double phosphorylation. 

MAPK Model with Scaffold Proteins 

The scaffold protein model was not well suited for the modeling of LF cleavage of 

MAPKs resulting in macrophage cell death.  The RAW264.7 cells could be adequately fit 

with a high reaction rate constant of 5.9e-4 s-1, which is twice that of the other models for 

this cell type (Figure 20).  Unfortunately, the behavior of the J774A.1 macrophages could 

not be reflected in the model.  Dropping the rate constant to a value of 1.0 e-4 did 

increase the MAPK activation sufficiently to reach the lower SEM limit of 40% viability 

at five hours, but the 10-hour activation was elevated well above zero (Figure 21).  

Assuming that the rate constants are equal for all three activation states of unbound 

MAPKKs, no single number can be found to fit the in vitro MAPK activity levels 

observed in the J774A.1 cell line.  As discussed previously, this is likely due to the high 

proportion of MAPKK bound in complexes with scaffold proteins. 
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Figure 20: Scaffold protein model fit to RAW264.7 data (dots) 

 

 
Figure 21: Scaffold protein model showing poor fit to J774A.1 data (dots) 
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Summary 

 The ultrasensitivity and negative feedback models were able to be parameterized 

to fit the in vitro data for the co-culturing of macrophage cell lines RAW264.7 and 

J774A.1 with Bacillus anthracis.  The model in which MAPKKs are bound to scaffold 

proteins was unable to fit the data for J774A.1, possibly due to the exclusion of the bound 

substrates of LF.  No data whatsoever could be found in the literature for kinetic reaction 

rate constants for the cleaving of kinases by LF.  The reaction rate constants for the 

cleavage of all isoforms of bi-, mono- and unphosphorylated MAPKKs by the protease 

LF were thus estimated for the three published models.  The estimated rate constants, 

which are summarized in Table 2, show a reasonably consistent performance by the 

models in estimating a LF-MAPKK reaction rate parameter for each macrophage type.  

Additionally, ratio of the rate constants is approximately the same, around 2.3 to 2.4, for 

the three simulations fit to both cell lines.  While the two versions of negative feedback 

loop intensity resulted in different estimates for the kinetic constant, the relative 

sensitivity of the two macrophage cell lines was about the same for both n=1 and n=2 

feedback mechanisms.  This consistency demonstrates the robustness of the models. 

 

Table 2: Kinetic constants for LF cleavage of MAPKKs 

Macrophage 
Cell Line Ultrasensitivity 

Negative 
Feedback 

(n=1) 

Negative 
Feedback 

(n=2) 

Scaffold 
Proteins 

RAW264.7 2.95e-4 s-1 2.9e-4 s-1 2.3e-4 s-1 5.9e-4 s-1 

J774A.1 1.3e-4 s-1 1.2e-4 s-1 9.5e-5 s-1 no fit 

Ratio 2.3 2.4 2.4 n/a 
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V.  Discussion and Conclusions 
 
 

Discussion 

The mitogen-activated protein kinase (MAPK) pathways mediate critical 

intracellular communication to enable regulatory functions such as gene expression, 

survival and apoptosis.  The broad capability of Bacillus anthracis to suppress cellular 

and system-wide immune response hinges first on the pathogen’s ability to use the 

macrophage as a Trojan horse in its attack on the immune system.  While decades of 

laboratory analysis have advanced the general understanding of the pathogenesis of 

inhalational anthrax, the role of the toxin components, and the cytotoxic mechanisms 

resulting in apoptosis are still unclear.  Advances in genomic and proteomic technologies 

led to the mapping of the human genome, and in the post-genome era a plethora of data 

can be generated on cellular components and their functions.  With computer technology 

and the development of computational methods, these reserves of biochemical data have 

made mathematical modeling of complete microorganisms a possibility. 

Such advanced models must be built in phases.  Some systems modelers apply the 

top-down approach of establishing a far-reaching model and then applying simplifications 

until the behavior of concern can be seen in the system, enabling them to see what 

biomolecular components play a role in the behavior.  As in the case of the MAPK 

models, some biologists conduct research using the bottom-up approach of modeling a 

single signal transduction pathway to study it for unexpected behaviors, form testable 

hypotheses, and guide laboratory analysis that will facilitate additional improvements to 
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the modeling process.  Within this research, no unique microbiological study was 

conducted for comparison; these models were developed with previously published in 

vitro viability data for RAW264.7 macrophages and J774A.1 macrophages that were 

incubated after phagocytosis of LF-producing spores.  Models are often based on data 

collected for a specific MAPK isoform, but stimulants are not generally isoform-specific 

and inhibitors can have unpredicted effects that influence the results.  The various 

MAPKK isoforms are treated here as a single chemical species because LF acts 

destructively on nearly all MAPKKs, because the redundancies and cross-over 

interactions between pathways are not well defined, and because no MAPK models exist 

that would support a more detailed, isoform-specific model.  

The three MAPK models investigated here exhibit specific characteristics 

(ultrasensitivity, negative feedback and scaffold proteins) and were developed by their 

respective authors for the purpose of studying these respective aspects of the MAPK 

pathway.  By adding the depletion of MAPKKs by anthrax lethal factor (LF), the known 

inhibition of the MAPK signal output is be observed, and the reaction rate constant for 

MAPKK cleavage has been approximated.  For the scaffold protein model, only one cell 

line’s viability could be matched, and the resultant approximation of the rate constant 

from that parameterization is twice that estimated by the other two models.  Presumably 

due to the dominance of bound substrates that are unavailable for cleavage, the model 

does not adequately capture the behavior of the system.  However, the ultrasensitivity and 

negative feedback models both exhibited similar behavior and ability to match both cell 

viability data sets.  The application of a stronger negative feedback mechanism in the 
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oscillating models results in a lower minimum active MAPK concentration but does not 

alter the periodicity of the oscillations.  Without more data on cell viability, either more 

information regarding the error or more time points over the duration of the experiment, 

both formulations for negative feedback must be considered equally able to reflect system 

behavior.  The negative feedback model does present a challenge because the average of 

the oscillations must be used to fit the data and because change of curve shape is more 

difficult to define.  In general, the two simple cascade models are equally capable of 

fitting the data.  The application of the model would likely influence selection.  A study 

of the kinetics inside a cell, such as might be used to study the effect of changes in the 

expression of immunoregulatory genes, may apply the negative feedback model for its 

more accurate reflection of intracellular interactions.  Comparatively, a study using 

cultures or approximating the effects of cytokines in tissue would observe a multitude of 

cells signaling and expressing cytokines simultaneously, and may apply the 

ultrasensitivity model for a better approximation of the overall chemical concentration 

contributing to the effects observed in the system.  

Excluding the scaffold model, the approximations for the kinetic constants are 

reasonably consistent.  For the RAW264.7 cell line, the LF cleavage reaction occurred at 

a rate of approximately 3.0e-4 s-1 using both the ultrasensitivity and the n=1 negative 

feedback model.  These two models resulted in rates of 1.2e-4 s-1 and 1.3e-4 s-1, 

respectively, for the J774A.1 macrophages.  (This close agreement between the two 

models hints that the action by which MAPK inhibits cascade activation may be a single 

phosphorylation and not equivalent to cooperative inhibition.)  The stronger negative 
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feedback when n=2 resulted in slightly lower estimates of the rate constants (2.4e-4 s-1 for 

RAW264.7, and 9.7e-5 s-1 for J774A.1), which is to be expected since stronger self-

regulated inhibition by the pathway output reduces the amount of inhibition work that 

must be done by LF.  Specific concentrations used by the authors in the different models 

did result in different output (MAPK-PP concentration) seen in the results section, but the 

different parameter values did not appear to significantly affect the estimates of LF 

reactivity, an aspect of system behavior.  While the increased internal negative feedback 

did not significantly change the oscillations, the increased internal negative feedback does 

appear to affect the ability of the system to resist interference.   

In the third model, the MAPKKs bound with scaffold proteins are a significant 

pool of the total available MAPKK population.  This effectively limits the elimination of 

MAPPKs by LF, so inhibition in RAW cells could only be achieved by applying a rate 

constant of 5.9e-4 s-1, which is twice that estimated in the other two models.  The 

inability of the scaffold model to fit the data for the second cell line indicates that the 

application of the model does not accurately reflect system behavior and makes the rate 

constant estimate for the first cell line suspect.  The complexity of the scaffold model was 

much greater than that of the other two; the level of detail in the kinetics added should 

likely be on par with the kinetics of the base model to obtain reliable results. Model 

accuracy depends on whether a model correctly defines the underlying biochemical 

relationships, such as the identification of feedback loops, because it is the structure of 

the model that determines system behavior.  The inclusion of structural aspects 
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(biochemical species and interactions) that are not relevant to the investigative question 

should be omitted, so as to not overshadow or overpower the behavior being analyzed.   

The estimated rate constants for the reaction between LF and MAPKK also 

exhibit an interesting trend: for the ultrasensitivity and negative feedback models, 

respectively, the reaction rate is estimated as being 2.3 and 2.4 times higher within the 

RAW264.7 macrophages than within the J774A.1 macrophages.  The use of stronger 

feedback loop did have a minor effect on the estimated rate constant; but both of the 

inhibition parameter values (n=1 and n=2) provided a ratio of 2.4 between the two cell 

lines’ reaction rates.  The model’s consistent estimation of a kinetic parameter’s value 

under differing inhibitory strengths indicates an ability of this systems biology model to 

predict approximate relative susceptibility of a cell type to anthrax infection or toxin 

effects.  The ultrasensitivity-based host-pathogen model can be used to guide research for 

inhalational anthrax in cultures of human alveolar macrophages, the cell type of interest 

in development of a human dose-response model.  The ability to predict relative 

susceptibility between cell types should also apply to cells from different species.  

Knowing the relative susceptibility of the cells that facilitate the development of disease, 

the models would then also be able to increase confidence in the extrapolation of in vivo 

animal data regarding pathogenesis as well as therapeutic agents and the manipulation of 

gene expression as methods to combat infection. 

 
Significance of Research 

 This research presents what is believed to be the first host-pathogen systems 

biology model of anthrax infection.  Though a great deal of work must first be done to 
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achieve it, the goal from a toxicologist’s or emergency responder’s perspective is a 

human dose-response model that enables accurate health risk assessments following an 

intentional aerosol release of anthrax spores.  Models of transport of the bacteria to the 

lymph nodes by macrophages and of systemic infection must first be accomplished.  For 

this model, the approximated kinetic parameters may provide guidance in future research 

to quantify the rate constants for these cell lines and possibly others.  As just discussed, 

the ability of the models to provide consistent approximations of relative susceptibility to 

infection may promote the use of systems models to increase confidence in extrapolation 

between cell types, tissue sources, or species.  This model can serve as the starting point 

for expanding the model to include changes in cytokine expression due to MAPK 

inhibition, to add edema factor and protective antigen interactions, or to integrate the cell 

surface receptors that are bound by protective antigen and permit the entry of the toxins.  

LF can be added as a chemical species to develop concentration-dependent dose-response 

models for evaluation of cellular effects other than apoptosis or necrosis or for evaluation 

of therapeutic agents, such as those that would bind LF, inhibit MAPKK proteolysis, or 

up- and down-regulate genes to counteract the effects of MAPK inhibition. 

 
Recommendations for Future Research 

 More cell viability data is needed to validate the models’ predictive power.  

Biological variability is compounded by analysis being conducted in vitro, outside of the 

actual environment of infection and in the absence of other stimuli and factors that exist 

in vivo.  The human alveolar macrophage would be the best model for co-culture of 

Bacillus anthracis.  For any cell type tested, more time point analyses are needed to 
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present a better picture of behavior that can be used to tune and validate models.   

Because many other stimuli exist and can activate or suppress MAPK signal pathways, 

cell viability data for macrophages exposed to purified LF or LT would also be beneficial 

so that the kinetic parameter estimates could be more confidently attributed to the LF-

MAPKK interactions rather than signaling effects due to other stimuli or inhibitors. 

 Within cell signaling work, the complete interactions of the MAPK cascade, such 

as the negative feedback loop, must be included to correctly predict system behavior.  

Research should continue to increase understanding of the intra-cascade interactions and 

identify other possible positive or negative feedback loops.  Though nearly all MAPKKs 

are cleaved by LF, not all MAPKKs have been implicated in immune response regulation.  

An isoform-specific MAPK model may better be able to predict cell death and other 

effects, such as cytokine suppression.  This effort may be worth a second attempt if such a 

detailed model becomes available.  Also regarding specificity of LF interactions, this 

paper questioned the possibility of LF reacting differentially with the bi-, mono-, and 

unphosphorylated forms of MAPKK.  Binding can change the shape of a protein, and 

phosphorylation changes the mass and thereby possibly diffusion, therefore this 

possibility may require further investigation.  Also, a more complete kinetic model that 

includes the LF interactions with scaffold-bound MAPKKs is needed to more accurately 

represent the true intracellular signaling mechanisms. 

 
Summary 

Host-pathogen systems biology provides a holistic approach to understanding the 

dynamic response of a cell to pathogenic challenge and, in the case of B anthracis, to 
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toxins that make infection possible by manipulating the intracellular signal network.  This 

work has expanded on the first model by Robinson et al by including all of the 

phosphorylated states of MAPKK as substrates of the proteinase, LF.  While attempting 

to find one ‘best’ model to reflect the behavior of macrophages, two host-pathogen 

models have been developed, parameterized and found acceptable for investigating the 

inhibition of MAPK signaling by anthrax LF.  The ultrasensitivity and negative feedback 

models can now both be used in additional modeling efforts such as adding edema factor 

interactions, TNF-α inhibition, or LF concentration-dependence to gain a more complete 

and accurate approximation of the biological system’s behavior.   Both of these models 

can be used concomitantly with empirical data to reflect macrophage system behavior and 

estimate unknown parameters with seeming consistency, even between cell types.  The 

two models can now also be used for aiding in vitro experimental design, such as for the 

determination of a range of enzyme concentrations under which a given behavior can be 

observed.  This work confirms that parameter estimates can generally be made 

irrespective of the specific chemical species and parameter values applied in the starting 

model.  In conclusion, both parameterized models for inhibition of the MAPK cascade by 

lethal factor can be used as a foundation for advancing toward a more complete anthrax-

macrophage host-pathogen systems biology model.
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Appendix A: Glossary of Terms, Acronyms and Abbreviations 

 

 

Definitions contained in this appendix are blended from two medical dictionaries, 

The American Heritage Stedman’s Medical Dictionary (2nd edition) and Dorland's 

Illustrated Medical Dictionary, which is provided on-line through Merck & Co, unless 

otherwise specifically cited.  Other references included and specifically cited, where 

applicable, include: Molecular Cell Biology by Lodish and others; Immunobiology (5th 

edition) by Janeway and others; The Cell: A Molecular Approach (2nd edition) by 

Cooper; and Casarett & Doull’s Essentials of Toxicology by Klaassen and Watkins.  A 

list of acronyms and abbreviations are also provided after the definitions. 
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Term/Acronym Definition 
adaptive (acquired) 
immunity 
 
 

Immunity obtained from the specialized lymphocytes and resultant 
antibodies which are activated by innate immune cells in response 
to an antigen; or obtained from the transmission of antibodies, as 
from mother to fetus through the placenta; able to protect from 
and provide increased immune response to future infection by the 
specific antigen (Klaassen and Watkins, 2003) 

alveolar 
macrophage (AM) 

Rounded, mononuclear, vigorously phagocytic macrophage in 
alveoli that ingests inhaled particulate matter 

andenylate cyclase Membrane-bound enzyme that catalyzes formation of cyclic AMP 
(cAMP) from ATP; also called adenylyl cyclase. Binding of 
certain ligands to their cell-surface receptors leads to activation of 
adenylyl cyclase and a rise in intracellular cAMP (Lodish and 
others, 2000) 

antibody (Ab) Molecule that reacts with a specific antigen, such as a bacterium 
or a toxin, that induced its synthesis or with similar molecules; 
destroys or weakens bacteria and neutralizes organic poisons, 
forming the basis of immunity; synthesized by B cells that have 
been activated by the binding of an antigen to a cell-surface 
receptor; also known collectively as immunoglobulins (Ig) 

antigen (Ag) Any of various substances (such as toxins, bacteria, or cells of 
transplanted organs) that induce a specific immune response 
(production of antibodies) when introduced to the body and can 
react or be bound by that specific antibody; named by their ability 
to cause antibody generation 

antigen-presenting 
cell (APC) 

Cells that can process antigens and present the fragments on the 
cell surface with molecules required for T-cell activation; 
dendritic cells, macrophages, and B cells are all capable of serving 
as APCs for T cells, but dendritic cells are more specialized and 
often synonymous with the term 'professional antigen-presenting 
cell' (Janeway and others, 2001) 

B cell A lymphocyte that differentiates into a plasma cell able to 
synthesize a specific antibody which will react with the specific 
antigen that stimulated the B cell 
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Term/Acronym Definition 
cAMP-response 
element-binding 
(CREB) protein 

A transcription factor activated by the catalytic subunit of PKA, 
which is activated by cAMP 

chemokine Any of various chemoattractant cytokines produced in 
inflammatory response that mobilize and activate cells, especially 
phagocytes and lymphocytes (Janeway and others, 2001) 

chemotaxis Movement or orientation of an organism or cell along a chemical 
concentration gradient, either toward or away from the stimulus 

cyclic adenosine 
monophosphate 
(cAMP) 

An intracellular signaling molecule that increases in concentration 
in response to the binding of G protein-coupled receptors, 
subsequently activating protein kinase A (PKA) (Lodish and 
others, 2000) 

cytokine Any non-antibody protein released on contact with a specific 
antigen; acts as an intercellular mediator such as is the generation 
of an immune response 

cytolysis The destruction of a cell 

cytotoxic Relating to, or producing a toxic effect on cells 

cytotoxic T cell See T cells; sometimes cytotoxic T leukocyte, or CTL 

cytotoxicity Degree of destructive action by an agent on certain cells 

cytotoxin A T-cell produced protein with a specific toxic effect on target 
cells (Janeway and others, 2001) 

dendritic cells 
(DC) 
 
 

Immune cells derived from monocytes or from bone marrow 
precursors to monocytes; present in skin, lungs, stomach and 
intestines in small numbers; constantly sample their surroundings 
for pathogens; phagocytose pathogens, digest pathogen proteins, 
migrate to lymphoid tissues where they present the protein 
fragments on the cell surface and signal to activate lymphocyte 
transformation into specific T cells and B cells; mature upon 
contact with pathogens, developing dendritic arms for increased 
surface area for lymphocyte interaction; known as professional 
antigen-presenting cells (APC)  (Hart, 1997) 
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Term/Acronym Definition 
domain A tertiary protein structure from folds causing dense clusters of 

secondary structures, forming distinct regions on a  protein; often 
defined by the included amino acids, by a specific motif, or by its 
function (catalysis or binding) (Lodish and others, 2000) 

endocytosis Uptake of extracellular material into the cytosol through vesicles 
(pores) formed in the plasma membrane (Lodish and others, 2000) 

endotoxic shock Shock associated with overwhelming infection and subsequent 
release of endotoxins by gram-negative bacteria that causes 
sequestration of blood in the capillaries and veins 

endotoxin Toxin existing as part of the cell membrane of bacteria and 
released upon destruction of the bacterial cell; less potent than 
exotoxins 

fibroblast Common cell found in connective tissue; secretes collagen and 
other components of the extracellular matrix; migrates and 
proliferates during wound healing (Lodish and others, 2000) 

helper T cell Lymphocyte that makes lymphokines to regulate other immune 
cells, such as B cells and monocytes; "necessary for the 
differentiating of B cells into antibody-producing cells"; also T-
helper cell, Th cell, or Th1 cell (The American Heritage Stedman’s 
Medical Dictionary, 2004) 

immunoglobulin 
(Ig) 

See antibody (Ab); divided into five major classes (IgA, IgD, IgE, 
IgG, and IgM) with unique structures and antigenic functions 
(Lodish and others, 2000) 

inhibitor Substance that inhibits, reduces or limits physiological, chemical, 
or enzymatic action (reaction rate, enzyme catalytic activity, 
growth of microorganisms) 

innate immunity Immunity that occurs naturally via physical and biochemical 
barriers of the body, such as skin and the mucociliary escalator, as 
well as nonspecific immune cells, such as 
monocytes/macrophages, neutrophils, and dendritic cells, and 
does not arise from an immunologic memory of previous infection 
or vaccination (Klaassen and Watkins, 2003) 
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Term/Acronym Definition 
interferon Antiviral glycoprotein cytokine produced in response stimuli, 

such as viruses, bacteria or endotoxins, and that binds to receptors 
on target cells so as to interfere with viral replication in the cells 
and, in some cases, modulate specific cellular immune functions 

interleukin (IL) "Any of a class of lymphokines that act to stimulate, regulate, or 
modulate lymphocytes such as T cells"  (The American Heritage 
Stedman’s Medical Dictionary, 2004) 

kinase Any of various enzymes that transfer a phosphate group from a 
donor, such as ADP or ATP, to an acceptor; named for the 
acceptor molecule such that a kinase which catalytically 
phosphorylates a protein is a protein kinase 

leukocyte Any of various forms of white blood cells, such as lymphocytes, 
monocytes, macrophages, and neutrophils, that function as 
protection against infection by microorganisms; capable of 
amoeboid movement 

lipopolysaccharide 
(LPS) 

an endotoxin derived from Gram-negative bacteria and commonly 
used as a macrophage activator, due to its ability to induce a 
strong response in immune cells and induce proinflammatory 
cytokines in macrophages 

lymphocyte Mononuclear, non-granular white blood cell produced in 
lymphoid tissue (lymph nodes, spleen, thymus, tonsils) and 
functioning in the development of immunity by transformation to 
T cells or B cells; make up 22-28% of white blood cells in 
humans 

lymphokine General term for soluble proteins that are released by sensitized 
lymphocytes on contact with specific antigens; mediate 
transformation of additional lymphocytes and play a role in 
monocyte and macrophage activity 

macrophage Any of large, mononuclear, highly phagocytic cells derived from 
monocytes that occur in the walls of blood vessels and loose 
connective tissue; usually immobile but become actively mobile 
when stimulated by inflammation; interact with lymphocytes to 
facilitate antibody production 

mitogen Agent that stimulates mitosis and lymphocyte transformation 
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Term/Acronym Definition 
monocyte Large, mononuclear, circulating, phagocytic white blood cell with 

fine granulation in the cytoplasm; formed in the bone marrow, 
transported to tissues, then develop into macrophages or dendritic 
cells; make up 3-8% of white blood cells in humans 

motif In a protein, a specific combination of and three-dimensional 
configuration of secondary structures (where primary structure is 
the sequence of amino acids in the protein's polypeptide chain, 
and secondary structure is a molecular shape such as a helix, 
sheet, turn, or loop that is stabilized by hydrogen bonds) (Lodish 
and others, 2000; Cooper, 2000) 

murine Of, relating to, or transmitted by a member of the rodent family 

natural killer (NK) 
cells 

Large granular, non-specialized lymphocytes (innate immune 
cells, unlike T and B lymphocytes) that detect and kill pathogen-
infected cells and certain tumor cells (Janeway and others, 2001) 

neutrophil Granular, highly phagocytic, highly pathogen-destructive white 
blood cell playing an important role in killing extracellular 
pathogens; "the major class of white blood cell in human 
peripheral blood" and responsible for recruiting macrophages if 
unable to contain and infection; also known as polymorphonuclear 
cells (PMNs) or neutrophilic PMNs (Janeway and others, 2001) 

phagocytosis Process by which extracellular materials, particles or pathogens 
are internalized, usually by macrophages or neutrophils; bacteria 
are taken up into a vesicle called a phagosome to be destroyed by 
lysosomal enzymes (Janeway and others, 2001) 

phosphorylation Addition of a phosphate group to a molecule by a phosphorylase 
or kinase, especially in the case of activation of an enzyme by 
addition of one or more phosphate groups to specific amino acids 

phosphotase An enzyme that catalytically removes a phosphate group from a 
substrate; named for the substrate upon which dephosphorylation 
is performed such that a kinase phosphotase removes the 
phosphate group from a kinase, thereby deactivating it (Janeway 
and others, 2001) 
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Term/Acronym Definition 
platelet Cytoplasmic body having no nucleus or DNA, but having 

mitochondria and active enzymes, that is found in blood plasma 
and that promotes blood clotting;  also called a thrombocyte 

protein kinase A 
(PKA) 

Any of a family of inactive protein kinases which dissociates and 
releases two catalytic subunits when bound on regulatory subunits 
by cAMP; the released catalytic subunits then phosphorylate 
various proteins, including in the nucleus; also known as cAMP-
dependent protein kinase (cAPK) (Lodish and others, 2000) 

T cell A principal lymphocyte developed in the thymus and transported 
in the blood to lymphoid tissues where they have various adapted 
immune system roles such as identification of antigens and 
activation and deactivation of other immune cells; considered 
naïve T cells until they specialize upon exposure to an antigen, at 
which time the naive cell can proliferate and differentiate into 
cytotoxic T cells, which are capable of killing other cells, or 
helper T cells (see definition) 

transcription factor Non-RNA polymerase protein that initiates or regulates gene 
transcription (Lodish and others, 2000) 

tumor necrosis 
factor (TNF) 

Cytokine that induces programmed cell death, especially in tumor 
cells, but also makes inflammatory disease worse; most often 
produced by macrophages in the presence of an endotoxin 
(Janeway and others, 2001) 

TNF-α Cytokine with multiple immune functions which is produced by 
macrophages and activated T cells; primary member of the TNF 
family of cytokines (Janeway and others, 2001) 

Ab Antibody 

Ag Antigen 

AM Alveolar macrophage 

APC Antigen presenting cell 

AT Anthrax toxin 
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Term/Acronym Definition 
cAMP Cyclic adenosine monophosphate; also cyclic AMP 

CREB cAMP-response element-binding (CREB) protein 

DC Dendritic cells 

EF See edema factor 

ERK Extracellular signal-regulated kinase 

ET Edema toxin 

LF Lethal factor 

LPS Lipopolysaccharide 

LT Lethal toxin 

MAPK Mitogen-activated protein kinase 

MAPKK MAPK kinase 

MAPKKK MAPK kinase kinase 

MAPK-P Inactive MAPK with a single phosphate group 

MAPK-P'ase MAPK phosphotase, which dephosphorylates (inactivates) MAPK 

MAPK-PP Dual phosphorylated and thus activated MAPK 

NK Natural killer cells 

PKA Protein kinase A 

PA Protective antigen 

TNF Tumor necrosis factor 
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Appendix B: Method for Translating SBML Models 
 

Translation of SBML and JDesigner models into Berkeley Madonna was achieved by 

modifying the relevant code using the following procedures.  Madonna has help files with 

basic instructions on editing and application of equations, such as performing integrations 

and using exposure parameters (concentrations, durations, repetitions).  A complete 

software user guide is also available on the Madonna website. 

 
1. Open a new file in Madonna and, replacing the default code of the new file, paste in 

the following: 
 

;Parameters for simulated experiment 
length = 12   ;Length of inhalation exposure (hrs) 
interval = 24 
method stiff        ;Rosenbrock stiff solver 
starttime = 0  
stoptime = 24  
dtmin = 0.0001      ;minimum (and initial) step size 
dtmax=1             ;maximum step size 
tolerance=0.0001    ;error tolerance for stiff solver 
dtout=0.1           ;communication interval (optional) 
deltaT = stepsize   ;allows plotting step sizes used as 

deltaT(optional) 
interval = 24 

 
The last two lines allow repeated exposure scenarios to be modeled, such as daily 
exposures (24 h interval). 

 
2. In JDesigner, view the model equations (View -> View Model Equations). Cut and 

paste from this window into a newly created text file.  If necessary, omit (or comment 
out) the moiety conservation equations.  Changing the equations to comments can be 
achieved by placing a semicolon at the start of each line. 

 
3. In JDesigner, select the second ‘Export…’ option from the File drop down menu; 

select the Jarnac tab in the resulting window.  The ‘Display Translation’ button at the 
bottom of the window must be selected to display the code.  Cut and paste the code 
related to the parameter initial values (the lines beginning with ‘p.’, ignore the model 
equations).  The “p.compartment = 1;” equation code should be not be included. 
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4. Edit the resulting text file according to the following.   
 

a. Replace // with ; to convert comment lines. 
 
b. Replace “p.X = x” with “init X = x”, where X is a chemical parameter and x is its 

initial concentration at t = 0.  Replace “p.Y = y” with “Y = y”, where Y is a 
kinetic reaction constant and y is the value of the constant. 

 
c. Replace “dX/dT” with “ X’ ” (using the prime in Madonna to denote a derivative). 

 
d. Replace “v[X]” with “X”. 

 
e. Some mathematical expressions may also need to be changed.  In Michaelis-

Menten kinetic models, “pow(X,n)” becomes “X^n”. 
 
5. Paste resulting text file into the Madonna file below the code from step one above. 
 
6. Co-ordinate exposure parameters, if necessary. 
 
7. Run the program.  By default, Madonna plots the first two variables listed when the 

program is run.  Other variables can be selected for viewing using the buttons in the 
graph window. 

 

Example Translation 

This example is based on the oscillating model (Kholodenko, 2000) downloaded from 
BioModels and imported into JDesigner for translation into Berkeley Madonna (without 
the addition of LF-MAPKK cleavage reactions in JDesigner as described in Chapter III). 
 
The model equations as displayed in JDesigner are: 
  

// Reaction Rates: 
v[J0] = uVol*J0_V1*MKKK/((1+pow(MAPK_PP/J0_Ki,J0_n))*(J0_K1+MKKK)) 
v[J1] = uVol*J1_V2*MKKK_P/(J1_KK2+MKKK_P) 
v[J2] = uVol*J2_k3*MKKK_P*MKK/(J2_KK3+MKK) 
v[J3] = uVol*J3_k4*MKKK_P*MKK_P/(J3_KK4+MKK_P) 
v[J4] = uVol*J4_V5*MKK_PP/(J4_KK5+MKK_PP) 
v[J5] = uVol*J5_V6*MKK_P/(J5_KK6+MKK_P) 
v[J6] = uVol*J6_k7*MKK_PP*MAPK/(J6_KK7+MAPK) 
v[J7] = uVol*J7_k8*MKK_PP*MAPK_P/(J7_KK8+MAPK_P) 
v[J8] = uVol*J8_V9*MAPK_PP/(J8_KK9+MAPK_PP) 
v[J9] = uVol*J9_V10*MAPK_P/(J9_KK10+MAPK_P) 
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// Differential Equations: 
dMKKK/dt = - J0 + J1 
dMKK/dt = - J2 + J5 
dMKK_P/dt = + J2 - J3 + J4 - J5 
dMAPK/dt = - J6 + J9 
dMAPK_P/dt = + J6 - J7 + J8 - J9 
dMKKK_P/dt = + J0 - J1 
dMKK_PP/dt = + J3 - J4 
dMAPK_PP/dt = + J7 - J8 
 
// Conservation Laws: 
1: MKKK + MKKK_P    
2: MKK + MKK_P + MKK_PP    
3: MAPK + MAPK_P + MAPK_PP    

 
The parameter values (excluding p.compartment) from the exported Jarnac script are: 
 

p.uVol = 1; 
p.MKKK = 90; 
p.MKKK_P = 10; 
p.MKK = 280; 
p.MKK_P = 10; 
p.MKK_PP = 10; 
p.MAPK = 280; 
p.MAPK_P = 10; 
p.MAPK_PP = 10; 
p.J0_V1 = 2.5; 
p.J0_Ki = 9; 
p.J0_n = 1; 
p.J0_K1 = 10; 
p.J1_V2 = 0.25; 
p.J1_KK2 = 8; 
p.J2_k3 = 0.025; 
p.J2_KK3 = 15; 
p.J3_k4 = 0.025; 
p.J3_KK4 = 15; 
p.J4_V5 = 0.75; 
p.J4_KK5 = 15; 
p.J5_V6 = 0.75; 
p.J5_KK6 = 15; 
p.J6_k7 = 0.025; 
p.J6_KK7 = 15; 
p.J7_k8 = 0.025; 
p.J7_KK8 = 15; 
p.J8_V9 = 0.5; 
p.J8_KK9 = 15; 
p.J9_V10 = 0.5; 
p.J9_KK10 = 15; 
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The final Madonna file, after editing, looks like the following: 
 

; Parameters for simulated experiment 
method stiff        ;Rosenbrock stiff solver 
starttime = 0  
stoptime = 24  
dtmin = 0.0001      ;minimum (and initial) step size 
dtmax=1             ;maximum step size 
tolerance=0.0001    ;error tolerance for stiff solver 
dtout=0.1           ;communication interval (optional) 
 
; Reaction Rates: 
J0 = uVol*J0_V1*MKKK/((1+(MAPK_PP/J0_Ki)^(J0_n))*(J0_K1+MKKK)) 
J1 = uVol*J1_V2*MKKK_P/(J1_KK2+MKKK_P) 
J2 = uVol*J2_k3*MKKK_P*MKK/(J2_KK3+MKK) 
J3 = uVol*J3_k4*MKKK_P*MKK_P/(J3_KK4+MKK_P) 
J4 = uVol*J4_V5*MKK_PP/(J4_KK5+MKK_PP) 
J5 = uVol*J5_V6*MKK_P/(J5_KK6+MKK_P) 
J6 = uVol*J6_k7*MKK_PP*MAPK/(J6_KK7+MAPK) 
J7 = uVol*J7_k8*MKK_PP*MAPK_P/(J7_KK8+MAPK_P) 
J8 = uVol*J8_V9*MAPK_PP/(J8_KK9+MAPK_PP) 
J9 = uVol*J9_V10*MAPK_P/(J9_KK10+MAPK_P) 
J10 = J10_KX*MKK 
 
; Differential Equations: 
MKKK’ = - J0 + J1 
MKK’ = - J2 + J5 - J10 
MKK_P’ = + J2 - J3 + J4 - J5 
MKK_PP’ = + J3 - J4 
MAPK’ = - J6 + J9 
MAPK_P’ = + J6 - J7 + J8 - J9 
MKKK_P’ = + J0 - J1 
MAPK_PP’ = + J7 - J8 
Cleaved_MKK’ = + J10 
 
; Initial values 
init uVol = 1; 
init MKKK = 90; 
init MKKK_P = 10; 
init MKK = 280; 
init MKK_P = 10; 
init MKK_PP = 10; 
init MAPK = 280; 
init MAPK_P = 10; 
init MAPK_PP = 10; 
init Cleaved_MKK = 0; 
J0_V1 = 2.5; 
J0_Ki = 9; 
J0_n = 1; 



 

 88  

J0_K1 = 10; 
J1_V2 = 0.25; 
J1_KK2 = 8; 
J2_k3 = 0.025; 
J2_KK3 = 15; 
J3_k4 = 0.025; 
J3_KK4 = 15; 
J4_V5 = 0.75; 
J4_KK5 = 15; 
J5_V6 = 0.75; 
J5_KK6 = 15; 
J6_k7 = 0.025; 
J6_KK7 = 15; 
J7_k8 = 0.025; 
J7_KK8 = 15; 
J8_V9 = 0.5; 
J8_KK9 = 15; 
J9_V10 = 0.5; 
J9_KK10 = 15; 
J10_KX = 0.00025; 
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Appendix C: Berkeley Madonna Code for Models 
 

Each model was converted to code able to be imported into Berkeley Madonna 

(version 8.3.11) following the procedures in Appendix B.  This appendix includes the 

code for each model as exported from Berkeley Madonna; while parameter values were 

varied according to the discussion in Chapters III and IV, the code included here reflects 

only one value per parameter. 

 
Ultrasensitivity Model 

; Huang (3 RXN) with LF cleavage of MAPKK, _P, and _PP 
 
; Parameters for simulated experiment 
method stiff          ;Rosenbrock stiff solver 
starttime = 0  
stoptime = 54000  
dtmin = 0.1       ;minimum (and initial) step size 
dtmax=5              ;maximum step size 
tolerance=0.0001    ;error tolerance for stiff solver 
dtout=5            ;communication interval, optional (included to alleviate insufficient memory errors) 
 
; Initial values 
init PP_K = 0; 
init Cleaved_MAPKKs = 0; 
init E1 = 3E-05; 
init E2 = 0.0003; 
init KKK = 0.003; 
init P_KKK = 0; 
init KK = 1.2; 
init P_KK = 0; 
init PP_KK = 0; 
init K = 1.2; 
init P_K = 0; 
init KPase = 0.12; 
init KKPase = 0.0003; 
init E1_KKK = 0; 
init E2_P_KKK = 0; 
init P_KKK_KK = 0; 
init P_KKK_P_KK = 0; 
init PP_KK_K = 0; 
init PP_KK_P_K = 0; 
init KKPase_PP_KK = 0; 
init KKPase_P_KK = 0; 
init KPase_PP_K = 0; 
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init KPase_P_K = 0; 
r1a_a1 = 1000; 
r1a_d1 = 150; 
r1b_k2 = 150; 
r2a_a2 = 1000; 
r2a_d2 = 150; 
r2b_k2 = 150; 
r3a_a3 = 1000; 
r3a_d3 = 150; 
r3b_k3 = 150; 
r4a_a4 = 1000; 
r4a_d4 = 150; 
r4b_k4 = 150; 
r5a_a5 = 1000; 
r5a_d5 = 150; 
r5b_k5 = 150; 
r6a_a6 = 1000; 
r6a_d6 = 150; 
r6b_k6 = 150; 
r7a_a7 = 1000; 
r7a_d7 = 150; 
r7b_k7 = 150; 
r8a_a8 = 1000; 
r8a_d8 = 150; 
r8b_k8 = 150; 
r9a_a9 = 1000; 
r9a_d9 = 150; 
r9b_k9 = 150; 
r10a_a10 = 1000; 
r10a_d10 = 150; 
r10b_k10 = 150; 
J20_k = 0.000295; MKK cleavage 
J21_k = 0.000295; MKK_P cleavage 
J22_k = 0.000295; MKK_PP cleavage 
compartment = 1; 
 
; Reaction Rates: 
r1a = compartment*(r1a_a1*E1*KKK-r1a_d1*E1_KKK) 
r1b = compartment*r1b_k2*E1_KKK 
r2a = compartment*(r2a_a2*E2*P_KKK-r2a_d2*E2_P_KKK) 
r2b = compartment*r2b_k2*E2_P_KKK 
r3a = compartment*(r3a_a3*KK*P_KKK-r3a_d3*P_KKK_KK) 
r3b = compartment*r3b_k3*P_KKK_KK 
r4a = compartment*(r4a_a4*P_KK*KKPase-r4a_d4*KKPase_P_KK) 
r4b = compartment*r4b_k4*KKPase_P_KK 
r5a = compartment*(r5a_a5*P_KK*P_KKK-r5a_d5*P_KKK_P_KK) 
r5b = compartment*r5b_k5*P_KKK_P_KK 
r6a = compartment*(r6a_a6*PP_KK*KKPase-r6a_d6*KKPase_PP_KK) 
r6b = compartment*r6b_k6*KKPase_PP_KK 
r7a = compartment*(r7a_a7*K*PP_KK-r7a_d7*PP_KK_K) 
r7b = compartment*r7b_k7*PP_KK_K 
r8a = compartment*(r8a_a8*P_K*KPase-r8a_d8*KPase_P_K) 
r8b = compartment*r8b_k8*KPase_P_K 
r9a = compartment*(r9a_a9*P_K*PP_KK-r9a_d9*PP_KK_P_K) 
r9b = compartment*r9b_k9*PP_KK_P_K 
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r10a = compartment*(r10a_a10*PP_K*KPase-r10a_d10*KPase_PP_K) 
r10b = compartment*r10b_k10*KPase_PP_K 
J20 = J20_k*KK 
J21 = J21_k*P_KK 
J22 = J22_k*PP_KK 
 
; Differential Equations: 
E1' = - r1a + r1b 
E2' = - r2a + r2b 
KKK' = - r1a + r2b 
P_KKK' = + r1b - r2a - r3a + r3b - r5a + r5b 
KK' = - r3a + r4b - J20 
P_KK' = + r3b - r4a - r5a + r6b - J21 
PP_KK' = + r5b - r6a - r7a + r7b - r9a + r9b - J22 
K' = - r7a + r8b 
P_K' = + r7b - r8a - r9a + r10b 
PP_K' = + r9b - r10a 
KPase' = - r8a + r8b - r10a + r10b 
KKPase' = - r4a + r4b - r6a + r6b 
P_KKK_KK' = + r3a - r3b 
PP_KK_K' = + r7a - r7b 
KKPase_PP_KK' = + r6a - r6b 
KPase_PP_K' = + r10a - r10b 
E2_P_KKK' = + r2a - r2b 
PP_KK_P_K' = + r9a - r9b 
E1_KKK' = + r1a - r1b 
KKPase_P_KK' = + r4a - r4b 
P_KKK_P_KK' = + r5a - r5b 
KPase_P_K' = + r8a - r8b 
Cleaved_MAPKKs' = + J20 + J21 + J22 
 

Oscillating Negative Feedback Model 
 
; LF cleavage of MAPKK, MAPKK-P, and MAPK-PP (Kholodenko, 2000) 
 
; Parameters for simulated experiment 
method stiff  ;Rosenbrock stiff solver 
starttime = 0  
stoptime = 72000 
dtmin = 0.0001      ;minimum (and initial) step size 
dtmax=1              ;maximum step size 
tolerance=0.0001    ;error tolerance for stiff solver 
dtout=0.1            ;communication interval (optional) 
 
; Initial values of enzymes and assigned values of kinetic constants 
init MAPK_PP = 10; 
init Cleaved_MKK = 0; 
init MKKK = 90; 
init MKKK_P = 10; 
init MKK = 280; 
init MKK_P = 10; 
init MKK_PP = 10; 
init MAPK = 280; 
init MAPK_P = 10; 
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uVol = 1; 
J0_V1 = 2.5; 
J0_Ki = 9; 
J0_n = 1 ; n = 2 for cooperative inhibition by double phosphorylation of SOS by MAPK 
J0_K1 = 10; 
J1_V2 = 0.25; 
J1_KK2 = 8; 
J2_k3 = 0.025; 
J2_KK3 = 15; 
J3_k4 = 0.025; 
J3_KK4 = 15; 
J4_V5 = 0.75; 
J4_KK5 = 15; 
J5_V6 = 0.75; 
J5_KK6 = 15; 
J6_k7 = 0.025; 
J6_KK7 = 15; 
J7_k8 = 0.025; 
J7_KK8 = 15; 
J8_V9 = 0.5; 
J8_KK9 = 15; 
J9_V10 = 0.5; 
J9_KK10 = 15; 
J10_KK = 0.00015  ; kinetic constant (k) for LF cleavage of MAPKK 
J11_KK_P = 0.00015  ; kinetic constant (k) for LF cleavage of MAPKK-P 
J12_KK_PP = 0.00015  ; kinetic constant (k) for LF cleavage of MAPKK-PP 
 
; Reaction Rates: 
J0 = uVol*J0_V1*MKKK/((1+(MAPK_PP/J0_Ki)^(J0_n))*(J0_K1+MKKK)) 
J1 = uVol*J1_V2*MKKK_P/(J1_KK2+MKKK_P) 
J2 = uVol*J2_k3*MKKK_P*MKK/(J2_KK3+MKK) 
J3 = uVol*J3_k4*MKKK_P*MKK_P/(J3_KK4+MKK_P) 
J4 = uVol*J4_V5*MKK_PP/(J4_KK5+MKK_PP) 
J5 = uVol*J5_V6*MKK_P/(J5_KK6+MKK_P) 
J6 = uVol*J6_k7*MKK_PP*MAPK/(J6_KK7+MAPK) 
J7 = uVol*J7_k8*MKK_PP*MAPK_P/(J7_KK8+MAPK_P) 
J8 = uVol*J8_V9*MAPK_PP/(J8_KK9+MAPK_PP) 
J9 = uVol*J9_V10*MAPK_P/(J9_KK10+MAPK_P) 
J10 = J10_KK*MKK  ; LF cleavage of MAPKK 
J11 = J11_KK_P*MKK_P ; LF cleavage of MAPKK-P 
J12 = J12_KK_PP*MKK_PP ; LF cleavage of MAPKK-PP 
 
; Differential Equations: 
MKKK' = - J0 + J1 
MKK' = - J2 + J5 - J10 
MKK_P' = + J2 - J3 + J4 - J5 - J11 
MKK_PP' = + J3 - J4 - J12 
MAPK' = - J6 + J9 
MAPK_P' = + J6 - J7 + J8 - J9 
MKKK_P' = + J0 - J1 
MAPK_PP' = + J7 - J8 
Cleaved_MKK' = + J10 + J11 + J12 
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Scaffold Proteins Model 

; MAPK cascade with Scaffold protein, with LF cleavage of MAPKK, -P and -PP (non scaffold) 
; (Levchenko and others, 2000) 
 
;Parameters for simulated experiment 
method stiff       ;Rosenbrock stiff solver 
starttime = 0  
stoptime = 54000 
dtmin = 0.0001      ;minimum (and initial) step size 
dtmax=2             ;maximum step size 
tolerance=0.0001     ;error tolerance for stiff solver 
dtout=1           ;communication interval (optional) 
 
; Initial parameter values 
init K_1_2 = 0; 
init Cleaved_MAPKK = 0; 
init MAPKP = 0.3; 
init MEKP = 0.2; 
init RAFK = 0.1; 
init RAFP = 0.3; 
init K_1_0 = 0.4; 
init K_1_1 = 0; 
init K_2_0 = 0.2; 
init K_2_1 = 0; 
init K_2_2 = 0; 
init K_3_0 = 0.3; 
init K_3_1 = 0; 
init K_K_1_0_2_2 = 0; 
init K_K_1_1_2_2 = 0; 
init K_K_2_0_3_1 = 0; 
init K_K_2_1_3_1 = 0; 
init K_MAPKP_1_1 = 0; 
init K_MAPKP_1_2 = 0; 
init K_MEKP_2_1 = 0; 
init K_MEKP_2_2 = 0; 
init K_RAFK_3_0 = 0; 
init K_RAFP_3_1 = 0; 
init S_m1_m1_m1 = 0.1; 
init S_m1_m1_0 = 0; 
init S_m1_m1_1 = 0; 
init S_m1_0_m1 = 0; 
init S_m1_0_0 = 0; 
init S_m1_0_1 = 0; 
init S_m1_1_m1 = 0; 
init S_m1_1_0 = 0; 
init S_m1_1_1 = 0; 
init S_m1_2_m1 = 0; 
init S_m1_2_0 = 0; 
init S_m1_2_1 = 0; 
init S_0_m1_m1 = 0; 
init S_0_m1_0 = 0; 
init S_0_m1_1 = 0; 
init S_0_0_m1 = 0; 
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init S_0_0_0 = 0; 
init S_0_0_1 = 0; 
init S_0_1_m1 = 0; 
init S_0_1_0 = 0; 
init S_0_1_1 = 0; 
init S_0_2_m1 = 0; 
init S_0_2_0 = 0; 
init S_0_2_1 = 0; 
init S_1_m1_m1 = 0; 
init S_1_m1_0 = 0; 
init S_1_m1_1 = 0; 
init S_1_0_m1 = 0; 
init S_1_0_0 = 0; 
init S_1_0_1 = 0; 
init S_1_1_m1 = 0; 
init S_1_1_0 = 0; 
init S_1_1_1 = 0; 
init S_1_2_m1 = 0; 
init S_1_2_0 = 0; 
init S_1_2_1 = 0; 
init S_2_m1_m1 = 0; 
init S_2_m1_0 = 0; 
init S_2_m1_1 = 0; 
init S_2_0_m1 = 0; 
init S_2_0_0 = 0; 
init S_2_0_1 = 0; 
init S_2_1_m1 = 0; 
init S_2_1_0 = 0; 
init S_2_1_1 = 0; 
init S_2_2_m1 = 0; 
init S_2_2_0 = 0; 
init S_2_2_1 = 0; 
init S_RAFK_m1_m1_0 = 0; 
init S_RAFK_m1_0_0 = 0; 
init S_RAFK_m1_1_0 = 0; 
init S_RAFK_m1_2_0 = 0; 
init S_RAFK_0_m1_0 = 0; 
init S_RAFK_0_0_0 = 0; 
init S_RAFK_0_1_0 = 0; 
init S_RAFK_0_2_0 = 0; 
init S_RAFK_1_m1_0 = 0; 
init S_RAFK_1_0_0 = 0; 
init S_RAFK_1_1_0 = 0; 
init S_RAFK_1_2_0 = 0; 
init S_RAFK_2_m1_0 = 0; 
init S_RAFK_2_0_0 = 0; 
init S_RAFK_2_1_0 = 0; 
init S_RAFK_2_2_0 = 0; 
 
J302_KK_k = 0.00059  ; LF cleavage of MAPKK 
J301_KKP_k = 0.00059  ; LF cleavage of MAPKK-P 
J303_KKPP_k = 0.00059 ; LF cleavage of MAPKK-PP 
Cytoplasm = 1; 
Reaction1_a1 = 1; 
Reaction2_d1 = 0.4; 
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Reaction3_k1 = 0.1; 
Reaction4_a2 = 0.5; 
Reaction5_d2 = 0.5; 
Reaction6_k2 = 0.1; 
Reaction7_a3 = 3.3; 
Reaction8_d3 = 0.42; 
Reaction9_k3 = 0.1; 
Reaction10_a4 = 10; 
Reaction11_d4 = 0.8; 
Reaction12_k4 = 0.1; 
Reaction13_a5 = 3.3; 
Reaction14_d5 = 0.4; 
Reaction15_k5 = 0.1; 
Reaction16_a6 = 10; 
Reaction17_d6 = 0.8; 
Reaction18_k6 = 0.1; 
Reaction19_a7 = 20; 
Reaction20_d7 = 0.6; 
Reaction21_k7 = 0.1; 
Reaction22_a8 = 5; 
Reaction23_d8 = 0.4; 
Reaction24_k8 = 0.1; 
Reaction25_a9 = 20; 
Reaction26_d9 = 0.6; 
Reaction27_k9 = 0.1; 
Reaction28_a10 = 5; 
Reaction29_d10 = 0.4; 
Reaction30_k10 = 0.1; 
Reaction31_kon = 10; 
Reaction32_koff = 0.5; 
Reaction33_kon = 10; 
Reaction34_koff = 0.5; 
Reaction35_kon = 10; 
Reaction36_koff = 0.5; 
Reaction37_kon = 10; 
Reaction38_koff = 0.5; 
Reaction39_kon = 10; 
Reaction40_koff = 0.5; 
Reaction41_kon = 10; 
Reaction42_koff = 0.5; 
Reaction43_kon = 10; 
Reaction44_koff = 0.5; 
Reaction45_kon = 10; 
Reaction46_koff = 0.5; 
Reaction47_kon = 10; 
Reaction48_koff = 0.5; 
Reaction49_kon = 10; 
Reaction50_koff = 0.5; 
Reaction51_kon = 10; 
Reaction52_koff = 0.5; 
Reaction53_kon = 10; 
Reaction54_koff = 0.5; 
Reaction55_kpon = 0; 
Reaction56_kpoff = 0.05; 
Reaction57_kpon = 0; 
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Reaction58_kpoff = 0.05; 
Reaction59_kpon = 0; 
Reaction60_kpoff = 0.05; 
Reaction61_kpon = 0; 
Reaction62_kpoff = 0.05; 
Reaction63_kpon = 0; 
Reaction64_kpoff = 0.05; 
Reaction65_kpon = 0; 
Reaction66_kpoff = 0.05; 
Reaction67_kpon = 0; 
Reaction68_kpoff = 0.05; 
Reaction69_kpon = 0; 
Reaction70_kpoff = 0.05; 
Reaction71_kpon = 0; 
Reaction72_kpoff = 0.05; 
Reaction73_kpon = 0; 
Reaction74_kpoff = 0.05; 
Reaction75_kpon = 0; 
Reaction76_kpoff = 0.05; 
Reaction77_kpon = 0; 
Reaction78_kpoff = 0.05; 
Reaction79_kpon = 0; 
Reaction80_kpoff = 0.05; 
Reaction81_kpon = 0; 
Reaction82_kpoff = 0.05; 
Reaction83_kpon = 0; 
Reaction84_kpoff = 0.05; 
Reaction85_kpon = 0; 
Reaction86_kpoff = 0.05; 
Reaction87_kpon = 0; 
Reaction88_kpoff = 0.05; 
Reaction89_kpon = 0; 
Reaction90_kpoff = 0.05; 
Reaction91_kpon = 0; 
Reaction92_kpoff = 0.05; 
Reaction93_kpon = 0; 
Reaction94_kpoff = 0.05; 
Reaction95_kpon = 0; 
Reaction96_kpoff = 0.05; 
Reaction97_kpon = 0; 
Reaction98_kpoff = 0.05; 
Reaction99_kpon = 0; 
Reaction100_kpoff = 0.05; 
Reaction101_kpon = 0; 
Reaction102_kpoff = 0.05; 
Reaction103_kon = 10; 
Reaction104_koff = 0.5; 
Reaction105_kon = 10; 
Reaction106_koff = 0.5; 
Reaction107_kon = 10; 
Reaction108_koff = 0.5; 
Reaction109_kpon = 0; 
Reaction110_kpoff = 0.05; 
Reaction111_kpon = 0; 
Reaction112_kpoff = 0.05; 
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Reaction113_kpon = 0; 
Reaction114_kpoff = 0.05; 
Reaction115_kpon = 0; 
Reaction116_kpoff = 0.05; 
Reaction117_kpon = 0; 
Reaction118_kpoff = 0.05; 
Reaction119_kpon = 0; 
Reaction120_kpoff = 0.05; 
Reaction121_kon = 10; 
Reaction122_koff = 0.5; 
Reaction123_kon = 10; 
Reaction124_koff = 0.5; 
Reaction125_kon = 10; 
Reaction126_koff = 0.5; 
Reaction127_kpon = 0; 
Reaction128_kpoff = 0.05; 
Reaction129_kpon = 0; 
Reaction130_kpoff = 0.05; 
Reaction131_kpon = 0; 
Reaction132_kpoff = 0.05; 
Reaction133_kpon = 0; 
Reaction134_kpoff = 0.05; 
Reaction135_kpon = 0; 
Reaction136_kpoff = 0.05; 
Reaction137_kpon = 0; 
Reaction138_kpoff = 0.05; 
Reaction139_kon = 10; 
Reaction140_koff = 0.5; 
Reaction141_kon = 10; 
Reaction142_koff = 0.5; 
Reaction143_kon = 10; 
Reaction144_koff = 0.5; 
Reaction145_kpon = 0; 
Reaction146_kpoff = 0.05; 
Reaction147_kpon = 0; 
Reaction148_kpoff = 0.05; 
Reaction149_kpon = 0; 
Reaction150_kpoff = 0.05; 
Reaction151_kpon = 0; 
Reaction152_kpoff = 0.05; 
Reaction153_kpon = 0; 
Reaction154_kpoff = 0.05; 
Reaction155_kpon = 0; 
Reaction156_kpoff = 0.05; 
Reaction157_kon = 10; 
Reaction158_koff = 0.5; 
Reaction159_kon = 10; 
Reaction160_koff = 0.5; 
Reaction161_kon = 10; 
Reaction162_koff = 0.5; 
Reaction163_kpon = 0; 
Reaction164_kpoff = 0.05; 
Reaction165_kpon = 0; 
Reaction166_kpoff = 0.05; 
Reaction167_kpon = 0; 



 

 98  

Reaction168_kpoff = 0.05; 
Reaction169_kpon = 0; 
Reaction170_kpoff = 0.05; 
Reaction171_kpon = 0; 
Reaction172_kpoff = 0.05; 
Reaction173_kpon = 0; 
Reaction174_kpoff = 0.05; 
Reaction175_kon = 10; 
Reaction176_koff = 0.5; 
Reaction177_kpon = 0; 
Reaction178_kpoff = 0.05; 
Reaction179_kon = 10; 
Reaction180_koff = 0.5; 
Reaction181_kpon = 0; 
Reaction182_kpoff = 0.05; 
Reaction183_kon = 10; 
Reaction184_koff = 0.5; 
Reaction185_kpon = 0; 
Reaction186_kpoff = 0.05; 
Reaction187_kon = 10; 
Reaction188_koff = 0.5; 
Reaction189_kpon = 0; 
Reaction190_kpoff = 0.05; 
Reaction191_kon = 10; 
Reaction192_koff = 0.5; 
Reaction193_kpon = 0; 
Reaction194_kpoff = 0.05; 
Reaction195_kon = 10; 
Reaction196_koff = 0.5; 
Reaction197_kpon = 0; 
Reaction198_kpoff = 0.05; 
Reaction199_kon = 10; 
Reaction200_koff = 0.5; 
Reaction201_kpon = 0; 
Reaction202_kpoff = 0.05; 
Reaction203_kon = 10; 
Reaction204_koff = 0.5; 
Reaction205_kpon = 0; 
Reaction206_kpoff = 0.05; 
Reaction207_kon = 10; 
Reaction208_koff = 0.5; 
Reaction209_kpon = 0; 
Reaction210_kpoff = 0.05; 
Reaction211_kon = 10; 
Reaction212_koff = 0.5; 
Reaction213_kpon = 0; 
Reaction214_kpoff = 0.05; 
Reaction215_kon = 10; 
Reaction216_koff = 0.5; 
Reaction217_kpon = 0; 
Reaction218_kpoff = 0.05; 
Reaction219_kon = 10; 
Reaction220_koff = 0.5; 
Reaction221_kpon = 0; 
Reaction222_kpoff = 0.05; 
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Reaction223_kon = 10; 
Reaction224_koff = 0.5; 
Reaction225_kpon = 0; 
Reaction226_kpoff = 0.05; 
Reaction227_kon = 10; 
Reaction228_koff = 0.5; 
Reaction229_kpon = 0; 
Reaction230_kpoff = 0.05; 
Reaction231_kon = 10; 
Reaction232_koff = 0.5; 
Reaction233_kpon = 0; 
Reaction234_kpoff = 0.05; 
Reaction235_kon = 10; 
Reaction236_koff = 0.5; 
Reaction237_kpon = 0; 
Reaction238_kpoff = 0.05; 
Reaction239_k7 = 0.1; 
Reaction240_k7 = 0.1; 
Reaction241_k7 = 0.1; 
Reaction242_k9a = 0.1; 
Reaction243_k9a = 0.1; 
Reaction244_k9a = 0.1; 
Reaction245_k3 = 0.1; 
Reaction246_k5a = 0.1; 
Reaction247_k3 = 0.1; 
Reaction248_k5a = 0.1; 
Reaction249_k3 = 0.1; 
Reaction250_k5a = 0.1; 
Reaction251_k3 = 0.1; 
Reaction252_k5a = 0.1; 
Reaction253_k1a = 100; 
Reaction254_d1a = 0; 
Reaction255_k1 = 0.1; 
Reaction256_k1a = 100; 
Reaction257_d1a = 0; 
Reaction258_k1 = 0.1; 
Reaction259_k1a = 100; 
Reaction260_d1a = 0; 
Reaction261_k1 = 0.1; 
Reaction262_k1a = 100; 
Reaction263_d1a = 0; 
Reaction264_k1 = 0.1; 
Reaction265_k1a = 100; 
Reaction266_d1a = 0; 
Reaction267_k1 = 0.1; 
Reaction268_k1a = 100; 
Reaction269_d1a = 0; 
Reaction270_k1 = 0.1; 
Reaction271_k1a = 100; 
Reaction272_d1a = 0; 
Reaction273_k1 = 0.1; 
Reaction274_k1a = 100; 
Reaction275_d1a = 0; 
Reaction276_k1 = 0.1; 
Reaction277_k1a = 100; 
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Reaction278_d1a = 0; 
Reaction279_k1 = 0.1; 
Reaction280_k1a = 100; 
Reaction281_d1a = 0; 
Reaction282_k1 = 0.1; 
Reaction283_k1a = 100; 
Reaction284_d1a = 0; 
Reaction285_k1 = 0.1; 
Reaction286_k1a = 100; 
Reaction287_d1a = 0; 
Reaction288_k1 = 0.1; 
Reaction289_k1a = 100; 
Reaction290_d1a = 0; 
Reaction291_k1 = 0.1; 
Reaction292_k1a = 100; 
Reaction293_d1a = 0; 
Reaction294_k1 = 0.1; 
Reaction295_k1a = 100; 
Reaction296_d1a = 0; 
Reaction297_k1 = 0.1; 
Reaction298_k1a = 100; 
Reaction299_d1a = 0; 
Reaction300_k1 = 0.1; 
 
; Reaction Rates: 
Reaction1 = Reaction1_a1*RAFK*K_3_0 
Reaction2 = Reaction2_d1*K_RAFK_3_0 
Reaction3 = Reaction3_k1*K_RAFK_3_0 
Reaction4 = Reaction4_a2*RAFP*K_3_1 
Reaction5 = Reaction5_d2*K_RAFP_3_1 
Reaction6 = Reaction6_k2*K_RAFP_3_1 
Reaction7 = Reaction7_a3*K_2_0*K_3_1 
Reaction8 = Reaction8_d3*K_K_2_0_3_1 
Reaction9 = Reaction9_k3*K_K_2_0_3_1 
Reaction10 = Reaction10_a4*MEKP*K_2_1 
Reaction11 = Reaction11_d4*K_MEKP_2_1 
Reaction12 = Reaction12_k4*K_MEKP_2_1 
Reaction13 = Reaction13_a5*K_2_1*K_3_1 
Reaction14 = Reaction14_d5*K_K_2_1_3_1 
Reaction15 = Reaction15_k5*K_K_2_1_3_1 
Reaction16 = Reaction16_a6*MEKP*K_2_2 
Reaction17 = Reaction17_d6*K_MEKP_2_2 
Reaction18 = Reaction18_k6*K_MEKP_2_2 
Reaction19 = Reaction19_a7*K_1_0*K_2_2 
Reaction20 = Reaction20_d7*K_K_1_0_2_2 
Reaction21 = Reaction21_k7*K_K_1_0_2_2 
Reaction22 = Reaction22_a8*MAPKP*K_1_1 
Reaction23 = Reaction23_d8*K_MAPKP_1_1 
Reaction24 = Reaction24_k8*K_MAPKP_1_1 
Reaction25 = Reaction25_a9*K_1_1*K_2_2 
Reaction26 = Reaction26_d9*K_K_1_1_2_2 
Reaction27 = Reaction27_k9*K_K_1_1_2_2 
Reaction28 = Reaction28_a10*MAPKP*K_1_2 
Reaction29 = Reaction29_d10*K_MAPKP_1_2 
Reaction30 = Reaction30_k10*K_MAPKP_1_2 
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Reaction31 = Reaction31_kon*K_1_0*S_m1_m1_m1 
Reaction32 = Reaction32_koff*S_0_m1_m1 
Reaction33 = Reaction33_kon*K_1_0*S_m1_m1_0 
Reaction34 = Reaction34_koff*S_0_m1_0 
Reaction35 = Reaction35_kon*K_1_0*S_m1_m1_1 
Reaction36 = Reaction36_koff*S_0_m1_1 
Reaction37 = Reaction37_kon*K_1_0*S_m1_0_m1 
Reaction38 = Reaction38_koff*S_0_0_m1 
Reaction39 = Reaction39_kon*K_1_0*S_m1_0_0 
Reaction40 = Reaction40_koff*S_0_0_0 
Reaction41 = Reaction41_kon*K_1_0*S_m1_0_1 
Reaction42 = Reaction42_koff*S_0_0_1 
Reaction43 = Reaction43_kon*K_1_0*S_m1_1_m1 
Reaction44 = Reaction44_koff*S_0_1_m1 
Reaction45 = Reaction45_kon*K_1_0*S_m1_1_0 
Reaction46 = Reaction46_koff*S_0_1_0 
Reaction47 = Reaction47_kon*K_1_0*S_m1_1_1 
Reaction48 = Reaction48_koff*S_0_1_1 
Reaction49 = Reaction49_kon*K_1_0*S_m1_2_m1 
Reaction50 = Reaction50_koff*S_0_2_m1 
Reaction51 = Reaction51_kon*K_1_0*S_m1_2_0 
Reaction52 = Reaction52_koff*S_0_2_0 
Reaction53 = Reaction53_kon*K_1_0*S_m1_2_1 
Reaction54 = Reaction54_koff*S_0_2_1 
Reaction55 = Reaction55_kpon*K_1_1*S_m1_m1_m1 
Reaction56 = Reaction56_kpoff*S_1_m1_m1 
Reaction57 = Reaction57_kpon*K_1_1*S_m1_m1_0 
Reaction58 = Reaction58_kpoff*S_1_m1_0 
Reaction59 = Reaction59_kpon*K_1_1*S_m1_m1_1 
Reaction60 = Reaction60_kpoff*S_1_m1_1 
Reaction61 = Reaction61_kpon*K_1_1*S_m1_0_m1 
Reaction62 = Reaction62_kpoff*S_1_0_m1 
Reaction63 = Reaction63_kpon*K_1_1*S_m1_0_0 
Reaction64 = Reaction64_kpoff*S_1_0_0 
Reaction65 = Reaction65_kpon*K_1_1*S_m1_0_1 
Reaction66 = Reaction66_kpoff*S_1_0_1 
Reaction67 = Reaction67_kpon*K_1_1*S_m1_1_m1 
Reaction68 = Reaction68_kpoff*S_1_1_m1 
Reaction69 = Reaction69_kpon*K_1_1*S_m1_1_0 
Reaction70 = Reaction70_kpoff*S_1_1_0 
Reaction71 = Reaction71_kpon*K_1_1*S_m1_1_1 
Reaction72 = Reaction72_kpoff*S_1_1_1 
Reaction73 = Reaction73_kpon*K_1_1*S_m1_2_m1 
Reaction74 = Reaction74_kpoff*S_1_2_m1 
Reaction75 = Reaction75_kpon*K_1_1*S_m1_2_0 
Reaction76 = Reaction76_kpoff*S_1_2_0 
Reaction77 = Reaction77_kpon*K_1_1*S_m1_2_1 
Reaction78 = Reaction78_kpoff*S_1_2_1 
Reaction79 = Reaction79_kpon*K_1_2*S_m1_m1_m1 
Reaction80 = Reaction80_kpoff*S_2_m1_m1 
Reaction81 = Reaction81_kpon*K_1_2*S_m1_m1_0 
Reaction82 = Reaction82_kpoff*S_2_m1_0 
Reaction83 = Reaction83_kpon*K_1_2*S_m1_m1_1 
Reaction84 = Reaction84_kpoff*S_2_m1_1 
Reaction85 = Reaction85_kpon*K_1_2*S_m1_0_m1 
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Reaction86 = Reaction86_kpoff*S_2_0_m1 
Reaction87 = Reaction87_kpon*K_1_2*S_m1_0_0 
Reaction88 = Reaction88_kpoff*S_2_0_0 
Reaction89 = Reaction89_kpon*K_1_2*S_m1_0_1 
Reaction90 = Reaction90_kpoff*S_2_0_1 
Reaction91 = Reaction91_kpon*K_1_2*S_m1_1_m1 
Reaction92 = Reaction92_kpoff*S_2_1_m1 
Reaction93 = Reaction93_kpon*K_1_2*S_m1_1_0 
Reaction94 = Reaction94_kpoff*S_2_1_0 
Reaction95 = Reaction95_kpon*K_1_2*S_m1_1_1 
Reaction96 = Reaction96_kpoff*S_2_1_1 
Reaction97 = Reaction97_kpon*K_1_2*S_m1_2_m1 
Reaction98 = Reaction98_kpoff*S_2_2_m1 
Reaction99 = Reaction99_kpon*K_1_2*S_m1_2_0 
Reaction100 = Reaction100_kpoff*S_2_2_0 
Reaction101 = Reaction101_kpon*K_1_2*S_m1_2_1 
Reaction102 = Reaction102_kpoff*S_2_2_1 
Reaction103 = Reaction103_kon*K_2_0*S_m1_m1_m1 
Reaction104 = Reaction104_koff*S_m1_0_m1 
Reaction105 = Reaction105_kon*K_2_0*S_m1_m1_0 
Reaction106 = Reaction106_koff*S_m1_0_0 
Reaction107 = Reaction107_kon*K_2_0*S_m1_m1_1 
Reaction108 = Reaction108_koff*S_m1_0_1 
Reaction109 = Reaction109_kpon*K_2_1*S_m1_m1_m1 
Reaction110 = Reaction110_kpoff*S_m1_1_m1 
Reaction111 = Reaction111_kpon*K_2_1*S_m1_m1_0 
Reaction112 = Reaction112_kpoff*S_m1_1_0 
Reaction113 = Reaction113_kpon*K_2_1*S_m1_m1_1 
Reaction114 = Reaction114_kpoff*S_m1_1_1 
Reaction115 = Reaction115_kpon*K_2_2*S_m1_m1_m1 
Reaction116 = Reaction116_kpoff*S_m1_2_m1 
Reaction117 = Reaction117_kpon*K_2_2*S_m1_m1_0 
Reaction118 = Reaction118_kpoff*S_m1_2_0 
Reaction119 = Reaction119_kpon*K_2_2*S_m1_m1_1 
Reaction120 = Reaction120_kpoff*S_m1_2_1 
Reaction121 = Reaction121_kon*K_2_0*S_0_m1_m1 
Reaction122 = Reaction122_koff*S_0_0_m1 
Reaction123 = Reaction123_kon*K_2_0*S_0_m1_0 
Reaction124 = Reaction124_koff*S_0_0_0 
Reaction125 = Reaction125_kon*K_2_0*S_0_m1_1 
Reaction126 = Reaction126_koff*S_0_0_1 
Reaction127 = Reaction127_kpon*K_2_1*S_0_m1_m1 
Reaction128 = Reaction128_kpoff*S_0_1_m1 
Reaction129 = Reaction129_kpon*K_2_1*S_0_m1_0 
Reaction130 = Reaction130_kpoff*S_0_1_0 
Reaction131 = Reaction131_kpon*K_2_1*S_0_m1_1 
Reaction132 = Reaction132_kpoff*S_0_1_1 
Reaction133 = Reaction133_kpon*K_2_2*S_0_m1_m1 
Reaction134 = Reaction134_kpoff*S_0_2_m1 
Reaction135 = Reaction135_kpon*K_2_2*S_0_m1_0 
Reaction136 = Reaction136_kpoff*S_0_2_0 
Reaction137 = Reaction137_kpon*K_2_2*S_0_m1_1 
Reaction138 = Reaction138_kpoff*S_0_2_1 
Reaction139 = Reaction139_kon*K_2_0*S_1_m1_m1 
Reaction140 = Reaction140_koff*S_1_0_m1 
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Reaction141 = Reaction141_kon*K_2_0*S_1_m1_0 
Reaction142 = Reaction142_koff*S_1_0_0 
Reaction143 = Reaction143_kon*K_2_0*S_1_m1_1 
Reaction144 = Reaction144_koff*S_1_0_1 
Reaction145 = Reaction145_kpon*K_2_1*S_1_m1_m1 
Reaction146 = Reaction146_kpoff*S_1_1_m1 
Reaction147 = Reaction147_kpon*K_2_1*S_1_m1_0 
Reaction148 = Reaction148_kpoff*S_1_1_0 
Reaction149 = Reaction149_kpon*K_2_1*S_1_m1_1 
Reaction150 = Reaction150_kpoff*S_1_1_1 
Reaction151 = Reaction151_kpon*K_2_2*S_1_m1_m1 
Reaction152 = Reaction152_kpoff*S_1_2_m1 
Reaction153 = Reaction153_kpon*K_2_2*S_1_m1_0 
Reaction154 = Reaction154_kpoff*S_1_2_0 
Reaction155 = Reaction155_kpon*K_2_2*S_1_m1_1 
Reaction156 = Reaction156_kpoff*S_1_2_1 
Reaction157 = Reaction157_kon*K_2_0*S_2_m1_m1 
Reaction158 = Reaction158_koff*S_2_0_m1 
Reaction159 = Reaction159_kon*K_2_0*S_2_m1_0 
Reaction160 = Reaction160_koff*S_2_0_0 
Reaction161 = Reaction161_kon*K_2_0*S_2_m1_1 
Reaction162 = Reaction162_koff*S_2_0_1 
Reaction163 = Reaction163_kpon*K_2_1*S_2_m1_m1 
Reaction164 = Reaction164_kpoff*S_2_1_m1 
Reaction165 = Reaction165_kpon*K_2_1*S_2_m1_0 
Reaction166 = Reaction166_kpoff*S_2_1_0 
Reaction167 = Reaction167_kpon*K_2_1*S_2_m1_1 
Reaction168 = Reaction168_kpoff*S_2_1_1 
Reaction169 = Reaction169_kpon*K_2_2*S_2_m1_m1 
Reaction170 = Reaction170_kpoff*S_2_2_m1 
Reaction171 = Reaction171_kpon*K_2_2*S_2_m1_0 
Reaction172 = Reaction172_kpoff*S_2_2_0 
Reaction173 = Reaction173_kpon*K_2_2*S_2_m1_1 
Reaction174 = Reaction174_kpoff*S_2_2_1 
Reaction175 = Reaction175_kon*K_3_0*S_m1_m1_m1 
Reaction176 = Reaction176_koff*S_m1_m1_0 
Reaction177 = Reaction177_kpon*K_3_1*S_m1_m1_m1 
Reaction178 = Reaction178_kpoff*S_m1_m1_1 
Reaction179 = Reaction179_kon*K_3_0*S_m1_0_m1 
Reaction180 = Reaction180_koff*S_m1_0_0 
Reaction181 = Reaction181_kpon*K_3_1*S_m1_0_m1 
Reaction182 = Reaction182_kpoff*S_m1_0_1 
Reaction183 = Reaction183_kon*K_3_0*S_m1_1_m1 
Reaction184 = Reaction184_koff*S_m1_1_0 
Reaction185 = Reaction185_kpon*K_3_1*S_m1_1_m1 
Reaction186 = Reaction186_kpoff*S_m1_1_1 
Reaction187 = Reaction187_kon*K_3_0*S_m1_2_m1 
Reaction188 = Reaction188_koff*S_m1_2_0 
Reaction189 = Reaction189_kpon*K_3_1*S_m1_2_m1 
Reaction190 = Reaction190_kpoff*S_m1_2_1 
Reaction191 = Reaction191_kon*K_3_0*S_0_m1_m1 
Reaction192 = Reaction192_koff*S_0_m1_0 
Reaction193 = Reaction193_kpon*K_3_1*S_0_m1_m1 
Reaction194 = Reaction194_kpoff*S_0_m1_1 
Reaction195 = Reaction195_kon*K_3_0*S_0_0_m1 
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Reaction196 = Reaction196_koff*S_0_0_0 
Reaction197 = Reaction197_kpon*K_3_1*S_0_0_m1 
Reaction198 = Reaction198_kpoff*S_0_0_1 
Reaction199 = Reaction199_kon*K_3_0*S_0_1_m1 
Reaction200 = Reaction200_koff*S_0_1_0 
Reaction201 = Reaction201_kpon*K_3_1*S_0_1_m1 
Reaction202 = Reaction202_kpoff*S_0_1_1 
Reaction203 = Reaction203_kon*K_3_0*S_0_2_m1 
Reaction204 = Reaction204_koff*S_0_2_0 
Reaction205 = Reaction205_kpon*K_3_1*S_0_2_m1 
Reaction206 = Reaction206_kpoff*S_0_2_1 
Reaction207 = Reaction207_kon*K_3_0*S_1_m1_m1 
Reaction208 = Reaction208_koff*S_1_m1_0 
Reaction209 = Reaction209_kpon*K_3_1*S_1_m1_m1 
Reaction210 = Reaction210_kpoff*S_1_m1_1 
Reaction211 = Reaction211_kon*K_3_0*S_1_0_m1 
Reaction212 = Reaction212_koff*S_1_0_0 
Reaction213 = Reaction213_kpon*K_3_1*S_1_0_m1 
Reaction214 = Reaction214_kpoff*S_1_0_1 
Reaction215 = Reaction215_kon*K_3_0*S_1_1_m1 
Reaction216 = Reaction216_koff*S_1_1_0 
Reaction217 = Reaction217_kpon*K_3_1*S_1_1_m1 
Reaction218 = Reaction218_kpoff*S_1_1_1 
Reaction219 = Reaction219_kon*K_3_0*S_1_2_m1 
Reaction220 = Reaction220_koff*S_1_2_0 
Reaction221 = Reaction221_kpon*K_3_1*S_1_2_m1 
Reaction222 = Reaction222_kpoff*S_1_2_1 
Reaction223 = Reaction223_kon*K_3_0*S_2_m1_m1 
Reaction224 = Reaction224_koff*S_2_m1_0 
Reaction225 = Reaction225_kpon*K_3_1*S_2_m1_m1 
Reaction226 = Reaction226_kpoff*S_2_m1_1 
Reaction227 = Reaction227_kon*K_3_0*S_2_0_m1 
Reaction228 = Reaction228_koff*S_2_0_0 
Reaction229 = Reaction229_kpon*K_3_1*S_2_0_m1 
Reaction230 = Reaction230_kpoff*S_2_0_1 
Reaction231 = Reaction231_kon*K_3_0*S_2_1_m1 
Reaction232 = Reaction232_koff*S_2_1_0 
Reaction233 = Reaction233_kpon*K_3_1*S_2_1_m1 
Reaction234 = Reaction234_kpoff*S_2_1_1 
Reaction235 = Reaction235_kon*K_3_0*S_2_2_m1 
Reaction236 = Reaction236_koff*S_2_2_0 
Reaction237 = Reaction237_kpon*K_3_1*S_2_2_m1 
Reaction238 = Reaction238_kpoff*S_2_2_1 
Reaction239 = Reaction239_k7*S_0_2_m1 
Reaction240 = Reaction240_k7*S_0_2_0 
Reaction241 = Reaction241_k7*S_0_2_1 
Reaction242 = Reaction242_k9a*S_1_2_m1 
Reaction243 = Reaction243_k9a*S_1_2_0 
Reaction244 = Reaction244_k9a*S_1_2_1 
Reaction245 = Reaction245_k3*S_m1_0_1 
Reaction246 = Reaction246_k5a*S_m1_1_1 
Reaction247 = Reaction247_k3*S_0_0_1 
Reaction248 = Reaction248_k5a*S_0_1_1 
Reaction249 = Reaction249_k3*S_1_0_1 
Reaction250 = Reaction250_k5a*S_1_1_1 
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Reaction251 = Reaction251_k3*S_2_0_1 
Reaction252 = Reaction252_k5a*S_2_1_1 
Reaction253 = Reaction253_k1a*RAFK*S_m1_m1_0 
Reaction254 = Reaction254_d1a*S_RAFK_m1_m1_0 
Reaction255 = Reaction255_k1*S_RAFK_m1_m1_0 
Reaction256 = Reaction256_k1a*RAFK*S_m1_0_0 
Reaction257 = Reaction257_d1a*S_RAFK_m1_0_0 
Reaction258 = Reaction258_k1*S_RAFK_m1_0_0 
Reaction259 = Reaction259_k1a*RAFK*S_m1_1_0 
Reaction260 = Reaction260_d1a*S_RAFK_m1_1_0 
Reaction261 = Reaction261_k1*S_RAFK_m1_1_0 
Reaction262 = Reaction262_k1a*RAFK*S_m1_2_0 
Reaction263 = Reaction263_d1a*S_RAFK_m1_2_0 
Reaction264 = Reaction264_k1*S_RAFK_m1_2_0 
Reaction265 = Reaction265_k1a*RAFK*S_0_m1_0 
Reaction266 = Reaction266_d1a*S_RAFK_0_m1_0 
Reaction267 = Reaction267_k1*S_RAFK_0_m1_0 
Reaction268 = Reaction268_k1a*RAFK*S_0_0_0 
Reaction269 = Reaction269_d1a*S_RAFK_0_0_0 
Reaction270 = Reaction270_k1*S_RAFK_0_0_0 
Reaction271 = Reaction271_k1a*RAFK*S_0_1_0 
Reaction272 = Reaction272_d1a*S_RAFK_0_1_0 
Reaction273 = Reaction273_k1*S_RAFK_0_1_0 
Reaction274 = Reaction274_k1a*RAFK*S_0_2_0 
Reaction275 = Reaction275_d1a*S_RAFK_0_2_0 
Reaction276 = Reaction276_k1*S_RAFK_0_2_0 
Reaction277 = Reaction277_k1a*RAFK*S_1_m1_0 
Reaction278 = Reaction278_d1a*S_RAFK_1_m1_0 
Reaction279 = Reaction279_k1*S_RAFK_1_m1_0 
Reaction280 = Reaction280_k1a*RAFK*S_1_0_0 
Reaction281 = Reaction281_d1a*S_RAFK_1_0_0 
Reaction282 = Reaction282_k1*S_RAFK_1_0_0 
Reaction283 = Reaction283_k1a*RAFK*S_1_1_0 
Reaction284 = Reaction284_d1a*S_RAFK_1_1_0 
Reaction285 = Reaction285_k1*S_RAFK_1_1_0 
Reaction286 = Reaction286_k1a*RAFK*S_1_2_0 
Reaction287 = Reaction287_d1a*S_RAFK_1_2_0 
Reaction288 = Reaction288_k1*S_RAFK_1_2_0 
Reaction289 = Reaction289_k1a*RAFK*S_2_m1_0 
Reaction290 = Reaction290_d1a*S_RAFK_2_m1_0 
Reaction291 = Reaction291_k1*S_RAFK_2_m1_0 
Reaction292 = Reaction292_k1a*RAFK*S_2_0_0 
Reaction293 = Reaction293_d1a*S_RAFK_2_0_0 
Reaction294 = Reaction294_k1*S_RAFK_2_0_0 
Reaction295 = Reaction295_k1a*RAFK*S_2_1_0 
Reaction296 = Reaction296_d1a*S_RAFK_2_1_0 
Reaction297 = Reaction297_k1*S_RAFK_2_1_0 
Reaction298 = Reaction298_k1a*RAFK*S_2_2_0 
Reaction299 = Reaction299_d1a*S_RAFK_2_2_0 
Reaction300 = Reaction300_k1*S_RAFK_2_2_0 
Cleave_KKP = J301_KKP_k*K_2_1 
Cleave_KK = J302_KK_k*K_2_0 
Cleave_KKPP = J303_KKPP_k*K_2_2 
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; Differential Equations: 
Cleaved_MAPKK' = + Cleave_KKP + Cleave_KK + Cleave_KKPP 
MAPKP' = - Reaction22 + Reaction23 + Reaction24 - Reaction28 + Reaction29 + Reaction30 
MEKP' = - Reaction10 + Reaction11 + Reaction12 - Reaction16 + Reaction17 + Reaction18 
RAFK' = - Reaction1 + Reaction2 + Reaction3 - Reaction253 + Reaction254 + Reaction255 - 
Reaction256 + Reaction257 + Reaction258 - Reaction259 + Reaction260 + Reaction261 - 
Reaction262 + Reaction263 + Reaction264 - Reaction265 + Reaction266 + Reaction267 - 
Reaction268 + Reaction269 + Reaction270 - Reaction271 + Reaction272 + Reaction273 - 
Reaction274 + Reaction275 + Reaction276 - Reaction277 + Reaction278 + Reaction279 - 
Reaction280 + Reaction281 + Reaction282 - Reaction283 + Reaction284 + Reaction285 - 
Reaction286 + Reaction287 + Reaction288 - Reaction289 + Reaction290 + Reaction291 - 
Reaction292 + Reaction293 + Reaction294 - Reaction295 + Reaction296 + Reaction297 - 
Reaction298 + Reaction299 + Reaction300 
RAFP' = - Reaction4 + Reaction5 + Reaction6 
K_1_0' = - Reaction19 + Reaction20 + Reaction24 - Reaction31 + Reaction32 - Reaction33 + 
Reaction34 - Reaction35 + Reaction36 - Reaction37 + Reaction38 - Reaction39 + Reaction40 - 
Reaction41 + Reaction42 - Reaction43 + Reaction44 - Reaction45 + Reaction46 - Reaction47 + 
Reaction48 - Reaction49 + Reaction50 - Reaction51 + Reaction52 - Reaction53 + Reaction54 
K_1_1' = + Reaction21 - Reaction22 + Reaction23 - Reaction25 + Reaction26 + Reaction30 - 
Reaction55 + Reaction56 - Reaction57 + Reaction58 - Reaction59 + Reaction60 - Reaction61 + 
Reaction62 - Reaction63 + Reaction64 - Reaction65 + Reaction66 - Reaction67 + Reaction68 - 
Reaction69 + Reaction70 - Reaction71 + Reaction72 - Reaction73 + Reaction74 - Reaction75 + 
Reaction76 - Reaction77 + Reaction78 
K_1_2' = + Reaction27 - Reaction28 + Reaction29 - Reaction79 + Reaction80 - Reaction81 + 
Reaction82 - Reaction83 + Reaction84 - Reaction85 + Reaction86 - Reaction87 + Reaction88 - 
Reaction89 + Reaction90 - Reaction91 + Reaction92 - Reaction93 + Reaction94 - Reaction95 + 
Reaction96 - Reaction97 + Reaction98 - Reaction99 + Reaction100 - Reaction101 + Reaction102 
K_2_0' = - Reaction7 + Reaction8 + Reaction12 - Reaction103 + Reaction104 - Reaction105 + 
Reaction106 - Reaction107 + Reaction108 - Reaction121 + Reaction122 - Reaction123 + 
Reaction124 - Reaction125 + Reaction126 - Reaction139 + Reaction140 - Reaction141 + 
Reaction142 - Reaction143 + Reaction144 - Reaction157 + Reaction158 - Reaction159 + 
Reaction160 - Reaction161 + Reaction162 - Cleave_KK 
K_2_1' = + Reaction9 - Reaction10 + Reaction11 - Reaction13 + Reaction14 + Reaction18 - 
Reaction109 + Reaction110 - Reaction111 + Reaction112 - Reaction113 + Reaction114 - 
Reaction127 + Reaction128 - Reaction129 + Reaction130 - Reaction131 + Reaction132 - 
Reaction145 + Reaction146 - Reaction147 + Reaction148 - Reaction149 + Reaction150 - 
Reaction163 + Reaction164 - Reaction165 + Reaction166 - Reaction167 + Reaction168 - 
Cleave_KKP 
K_2_2' = + Reaction15 - Reaction16 + Reaction17 - Reaction19 + Reaction20 + Reaction21 - 
Reaction25 + Reaction26 + Reaction27 - Reaction115 + Reaction116 - Reaction117 + 
Reaction118 - Reaction119 + Reaction120 - Reaction133 + Reaction134 - Reaction135 + 
Reaction136 - Reaction137 + Reaction138 - Reaction151 + Reaction152 - Reaction153 + 
Reaction154 - Reaction155 + Reaction156 - Reaction169 + Reaction170 - Reaction171 + 
Reaction172 - Reaction173 + Reaction174 - Cleave_KKPP 
K_3_0' = - Reaction1 + Reaction2 + Reaction6 - Reaction175 + Reaction176 - Reaction179 + 
Reaction180 - Reaction183 + Reaction184 - Reaction187 + Reaction188 - Reaction191 + 
Reaction192 - Reaction195 + Reaction196 - Reaction199 + Reaction200 - Reaction203 + 
Reaction204 - Reaction207 + Reaction208 - Reaction211 + Reaction212 - Reaction215 + 
Reaction216 - Reaction219 + Reaction220 - Reaction223 + Reaction224 - Reaction227 + 
Reaction228 - Reaction231 + Reaction232 - Reaction235 + Reaction236 
K_3_1' = + Reaction3 - Reaction4 + Reaction5 - Reaction7 + Reaction8 + Reaction9 - Reaction13 
+ Reaction14 + Reaction15 - Reaction177 + Reaction178 - Reaction181 + Reaction182 - 
Reaction185 + Reaction186 - Reaction189 + Reaction190 - Reaction193 + Reaction194 - 
Reaction197 + Reaction198 - Reaction201 + Reaction202 - Reaction205 + Reaction206 - 
Reaction209 + Reaction210 - Reaction213 + Reaction214 - Reaction217 + Reaction218 - 
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Reaction221 + Reaction222 - Reaction225 + Reaction226 - Reaction229 + Reaction230 - 
Reaction233 + Reaction234 - Reaction237 + Reaction238 
K_K_1_0_2_2' = + Reaction19 - Reaction20 - Reaction21 
K_K_1_1_2_2' = + Reaction25 - Reaction26 - Reaction27 
K_K_2_0_3_1' = + Reaction7 - Reaction8 - Reaction9 
K_K_2_1_3_1' = + Reaction13 - Reaction14 - Reaction15 
K_MAPKP_1_1' = + Reaction22 - Reaction23 - Reaction24 
K_MEKP_2_1' = + Reaction10 - Reaction11 - Reaction12 
K_RAFK_3_0' = + Reaction1 - Reaction2 - Reaction3 
S_m1_m1_m1' = - Reaction31 + Reaction32 - Reaction55 + Reaction56 - Reaction79 + 
Reaction80 - Reaction103 + Reaction104 - Reaction109 + Reaction110 - Reaction115 + 
Reaction116 - Reaction175 + Reaction176 - Reaction177 + Reaction178 
S_m1_m1_0' = - Reaction33 + Reaction34 - Reaction57 + Reaction58 - Reaction81 + Reaction82 
- Reaction105 + Reaction106 - Reaction111 + Reaction112 - Reaction117 + Reaction118 + 
Reaction175 - Reaction176 - Reaction253 + Reaction254 
S_m1_m1_1' = - Reaction35 + Reaction36 - Reaction59 + Reaction60 - Reaction83 + Reaction84 
- Reaction107 + Reaction108 - Reaction113 + Reaction114 - Reaction119 + Reaction120 + 
Reaction177 - Reaction178 + Reaction255 
S_m1_0_m1' = - Reaction37 + Reaction38 - Reaction61 + Reaction62 - Reaction85 + Reaction86 
+ Reaction103 - Reaction104 - Reaction179 + Reaction180 - Reaction181 + Reaction182 
S_m1_0_0' = - Reaction39 + Reaction40 - Reaction63 + Reaction64 - Reaction87 + Reaction88 + 
Reaction105 - Reaction106 + Reaction179 - Reaction180 - Reaction256 + Reaction257 
S_m1_0_1' = - Reaction41 + Reaction42 - Reaction65 + Reaction66 - Reaction89 + Reaction90 + 
Reaction107 - Reaction108 + Reaction181 - Reaction182 - Reaction245 + Reaction258 
S_m1_1_m1' = - Reaction43 + Reaction44 - Reaction67 + Reaction68 - Reaction91 + Reaction92 
+ Reaction109 - Reaction110 - Reaction183 + Reaction184 - Reaction185 + Reaction186 
S_m1_1_0' = - Reaction45 + Reaction46 - Reaction69 + Reaction70 - Reaction93 + Reaction94 + 
Reaction111 - Reaction112 + Reaction183 - Reaction184 - Reaction259 + Reaction260 
S_m1_1_1' = - Reaction47 + Reaction48 - Reaction71 + Reaction72 - Reaction95 + Reaction96 + 
Reaction113 - Reaction114 + Reaction185 - Reaction186 + Reaction245 - Reaction246 + 
Reaction261 
S_m1_2_m1' = - Reaction49 + Reaction50 - Reaction73 + Reaction74 - Reaction97 + Reaction98 
+ Reaction115 - Reaction116 - Reaction187 + Reaction188 - Reaction189 + Reaction190 
S_m1_2_0' = - Reaction51 + Reaction52 - Reaction75 + Reaction76 - Reaction99 + Reaction100 
+ Reaction117 - Reaction118 + Reaction187 - Reaction188 - Reaction262 + Reaction263 
S_m1_2_1' = - Reaction53 + Reaction54 - Reaction77 + Reaction78 - Reaction101 + Reaction102 
+ Reaction119 - Reaction120 + Reaction189 - Reaction190 + Reaction246 + Reaction264 
S_0_m1_m1' = + Reaction31 - Reaction32 - Reaction121 + Reaction122 - Reaction127 + 
Reaction128 - Reaction133 + Reaction134 - Reaction191 + Reaction192 - Reaction193 + 
Reaction194 
S_0_m1_0' = + Reaction33 - Reaction34 - Reaction123 + Reaction124 - Reaction129 + 
Reaction130 - Reaction135 + Reaction136 + Reaction191 - Reaction192 - Reaction265 + 
Reaction266 
S_0_m1_1' = + Reaction35 - Reaction36 - Reaction125 + Reaction126 - Reaction131 + 
Reaction132 - Reaction137 + Reaction138 + Reaction193 - Reaction194 + Reaction267 
S_0_0_m1' = + Reaction37 - Reaction38 + Reaction121 - Reaction122 - Reaction195 + 
Reaction196 - Reaction197 + Reaction198 
S_0_0_0' = + Reaction39 - Reaction40 + Reaction123 - Reaction124 + Reaction195 - 
Reaction196 - Reaction268 + Reaction269 
S_0_0_1' = + Reaction41 - Reaction42 + Reaction125 - Reaction126 + Reaction197 - 
Reaction198 - Reaction247 + Reaction270 
S_0_1_m1' = + Reaction43 - Reaction44 + Reaction127 - Reaction128 - Reaction199 + 
Reaction200 - Reaction201 + Reaction202 
S_0_1_0' = + Reaction45 - Reaction46 + Reaction129 - Reaction130 + Reaction199 - 
Reaction200 - Reaction271 + Reaction272 
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S_0_1_1' = + Reaction47 - Reaction48 + Reaction131 - Reaction132 + Reaction201 - 
Reaction202 + Reaction247 - Reaction248 + Reaction273 
S_0_2_m1' = + Reaction49 - Reaction50 + Reaction133 - Reaction134 - Reaction203 + 
Reaction204 - Reaction205 + Reaction206 - Reaction239 
S_0_2_0' = + Reaction51 - Reaction52 + Reaction135 - Reaction136 + Reaction203 - 
Reaction204 - Reaction240 - Reaction274 + Reaction275 
S_0_2_1' = + Reaction53 - Reaction54 + Reaction137 - Reaction138 + Reaction205 - 
Reaction206 - Reaction241 + Reaction248 + Reaction276 
S_1_m1_m1' = + Reaction55 - Reaction56 - Reaction139 + Reaction140 - Reaction145 + 
Reaction146 - Reaction151 + Reaction152 - Reaction207 + Reaction208 - Reaction209 + 
Reaction210 
S_1_m1_0' = + Reaction57 - Reaction58 - Reaction141 + Reaction142 - Reaction147 + 
Reaction148 - Reaction153 + Reaction154 + Reaction207 - Reaction208 - Reaction277 + 
Reaction278 
S_1_m1_1' = + Reaction59 - Reaction60 - Reaction143 + Reaction144 - Reaction149 + 
Reaction150 - Reaction155 + Reaction156 + Reaction209 - Reaction210 + Reaction279 
S_1_0_m1' = + Reaction61 - Reaction62 + Reaction139 - Reaction140 - Reaction211 + 
Reaction212 - Reaction213 + Reaction214 
S_1_0_0' = + Reaction63 - Reaction64 + Reaction141 - Reaction142 + Reaction211 - 
Reaction212 - Reaction280 + Reaction281 
S_1_0_1' = + Reaction65 - Reaction66 + Reaction143 - Reaction144 + Reaction213 - 
Reaction214 - Reaction249 + Reaction282 
S_1_1_m1' = + Reaction67 - Reaction68 + Reaction145 - Reaction146 - Reaction215 + 
Reaction216 - Reaction217 + Reaction218 
S_1_1_0' = + Reaction69 - Reaction70 + Reaction147 - Reaction148 + Reaction215 - 
Reaction216 - Reaction283 + Reaction284 
S_1_1_1' = + Reaction71 - Reaction72 + Reaction149 - Reaction150 + Reaction217 - 
Reaction218 + Reaction249 - Reaction250 + Reaction285 
S_1_2_m1' = + Reaction73 - Reaction74 + Reaction151 - Reaction152 - Reaction219 + 
Reaction220 - Reaction221 + Reaction222 + Reaction239 - Reaction242 
S_1_2_0' = + Reaction75 - Reaction76 + Reaction153 - Reaction154 + Reaction219 - 
Reaction220 + Reaction240 - Reaction243 - Reaction286 + Reaction287 
S_1_2_1' = + Reaction77 - Reaction78 + Reaction155 - Reaction156 + Reaction221 - 
Reaction222 + Reaction241 - Reaction244 + Reaction250 + Reaction288 
S_2_m1_m1' = + Reaction79 - Reaction80 - Reaction157 + Reaction158 - Reaction163 + 
Reaction164 - Reaction169 + Reaction170 - Reaction223 + Reaction224 - Reaction225 + 
Reaction226 
S_2_m1_0' = + Reaction81 - Reaction82 - Reaction159 + Reaction160 - Reaction165 + 
Reaction166 - Reaction171 + Reaction172 + Reaction223 - Reaction224 - Reaction289 + 
Reaction290 
S_2_m1_1' = + Reaction83 - Reaction84 - Reaction161 + Reaction162 - Reaction167 + 
Reaction168 - Reaction173 + Reaction174 + Reaction225 - Reaction226 + Reaction291 
S_2_0_m1' = + Reaction85 - Reaction86 + Reaction157 - Reaction158 - Reaction227 + 
Reaction228 - Reaction229 + Reaction230 
S_2_0_0' = + Reaction87 - Reaction88 + Reaction159 - Reaction160 + Reaction227 - 
Reaction228 - Reaction292 + Reaction293 
S_2_0_1' = + Reaction89 - Reaction90 + Reaction161 - Reaction162 + Reaction229 - 
Reaction230 - Reaction251 + Reaction294 
S_2_1_m1' = + Reaction91 - Reaction92 + Reaction163 - Reaction164 - Reaction231 + 
Reaction232 - Reaction233 + Reaction234 
S_2_1_0' = + Reaction93 - Reaction94 + Reaction165 - Reaction166 + Reaction231 - 
Reaction232 - Reaction295 + Reaction296 
S_2_1_1' = + Reaction95 - Reaction96 + Reaction167 - Reaction168 + Reaction233 - 
Reaction234 + Reaction251 - Reaction252 + Reaction297 
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S_2_2_0' = + Reaction99 - Reaction100 + Reaction171 - Reaction172 + Reaction235 - 
Reaction236 + Reaction243 - Reaction298 + Reaction299 
S_RAFK_m1_m1_0' = + Reaction253 - Reaction254 - Reaction255 
S_RAFK_m1_0_0' = + Reaction256 - Reaction257 - Reaction258 
S_RAFK_m1_1_0' = + Reaction259 - Reaction260 - Reaction261 
S_RAFK_0_m1_0' = + Reaction265 - Reaction266 - Reaction267 
S_RAFK_0_0_0' = + Reaction268 - Reaction269 - Reaction270 
S_RAFK_0_1_0' = + Reaction271 - Reaction272 - Reaction273 
S_RAFK_0_2_0' = + Reaction274 - Reaction275 - Reaction276 
S_RAFK_1_m1_0' = + Reaction277 - Reaction278 - Reaction279 
S_RAFK_1_0_0' = + Reaction280 - Reaction281 - Reaction282 
S_RAFK_1_1_0' = + Reaction283 - Reaction284 - Reaction285 
S_RAFK_1_2_0' = + Reaction286 - Reaction287 - Reaction288 
S_RAFK_2_m1_0' = + Reaction289 - Reaction290 - Reaction291 
S_RAFK_2_0_0' = + Reaction292 - Reaction293 - Reaction294 
S_RAFK_2_1_0' = + Reaction295 - Reaction296 - Reaction297 
S_RAFK_m1_2_0' = + Reaction262 - Reaction263 - Reaction264 
K_MEKP_2_2' = + Reaction16 - Reaction17 - Reaction18 
S_2_2_1' = + Reaction101 - Reaction102 + Reaction173 - Reaction174 + Reaction237 - 
Reaction238 + Reaction244 + Reaction252 + Reaction300 
K_MAPKP_1_2' = + Reaction28 - Reaction29 - Reaction30 
K_RAFP_3_1' = + Reaction4 - Reaction5 - Reaction6 
S_2_2_m1' = + Reaction97 - Reaction98 + Reaction169 - Reaction170 - Reaction235 + 
Reaction236 - Reaction237 + Reaction238 + Reaction242 
S_RAFK_2_2_0' = + Reaction298 - Reaction299 - Reaction300 
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	Figure 1:  Image of Bacillus anthracis by transmission electron micrograph, showing cell division (A) and spore (B), left (http://phil.cdc.gov/phil/bt.asp, photo ID #1813); and detail
	of protective layers of a Bacillus spore, right (after Driks, 2003).
	anthrax, which may result in pharyngeal ulcers or flu-like symptoms that can progress to sepsis, resulting in a high mortality rate of 50%.  Because spores can be dispersed in an aerosol and because mortality may reach 85% with treatment, inhalational...
	For application as a bio-warfare agent, a microorganism must also be able to be mass produced, be stable enough to survive dissemination and the environment, and be reasonably quick to cause disease or death; and the resultant disease must be preventa...
	Background
	Intracellular Signaling and Anthrax Toxin.


	Just as some multicellular organisms use hormones to signal between organs and systems to trigger growth, reproductive development, or metabolic changes, all eukaryotic cells use highly-selective, internal signaling pathways to implement proliferation...
	In inhalational anthrax, aerosolized spores are respired into the alveoli of the lungs, where vigorously phagocytic alveolar macrophages (AM) rapidly ingest the foreign particles.  Normally the key executor of early bactericidal action, the AM instead...
	Figure 2:  Chest radiograph of inhalational anthrax victim, 22 hours before death
	(modified from CDC, http://phil.cdc.gov/phil/bt.asp, photo ID #1118)
	Systems Biology.

	Although “host-pathogen systems biology is still in its infancy” (Forst, 2006:220), cost reduction and acceleration of therapy and drug discovery has led researchers to use the paradigm to examine signal inhibition for: Group A Streptococcus (Musser a...
	Research Objectives

	As expressed by various authors in the SB discipline, even a simple model may prove useful for predicting intracellular interactions and, therefore, for establishing hypotheses toward tailored laboratory investigation.  The purpose of this research is...
	Scope and Limitations

	The models developed here are specific to the macrophage and do not consider other leukocytes, evasion of the immune response, or systemic disease.  The models are limited to the interactions of lethal factor with the MAPK cascade.  The models exclude...
	II.  Literature Review
	Chapter Overview

	For over a century Bacillus anthracis (BA), the causative bacterial agent leading to anthrax disease, has been to microbiologists what the fruit fly has been to traditional (macro) biologists.  Before biologists observed inheritance of genetic traits...
	Signaling and Immunity
	Mitogen-Activated Protein Kinases.


	It is necessary to simplify signal transduction from “the impenetrable soup of acronyms that it might at first appear to be” into key functional roles or sequential steps seen in most signaling pathways (Downward, 2001:759).  First, as a form of senso...
	A kinase is an enzyme which transfers a phosphate group from a donor such as adenosine triphosphate (ATP), the key supplier of energy to cells for various biochemical processes, to a target molecule.  This process, known as phosphorylation, has the ef...
	The biochemical stages that apply to each MAPK pathway can also be simplified as seen on the left half of Figure 3.  At the cell membrane, a MAP kinase kinase kinase (MAPKKK, also herein denoted as generic enzyme E3 for simplicity) is activated by cel...
	Blenis, 2004:321).  On the right, Figure 3 depicts the three main subfamilies of terminal MAPKs: extracellular signal-regulating kinase (ERK), p38, and c-Jun N-terminal kinases (JNK).  Multiple isoforms exist within each of the three main modules and ...
	MAPK activation and inhibition has been studied for a number of diseases, as was briefly summarized in the introduction.  MAPK cascades have been investigated by neurologists searching for the molecular basis of memory formation (Sharma and Carew, 200...
	Differential Responses.

	Despite the findings of Nick et al on MAPK-mediated TNF release in relation to neutrophil recruitment, the unique roles of the three primary MAPK groups in cytokine production are still unclear.  A 1999 article in the Journal of Surgical Research, “Ma...
	Bonni et al described the pro-survival, anti-apoptotic functions of ERK in “Cell survival Promoted by the Ras-MAPK Signaling Pathway by Transcription-Dependent and –Independent Mechanisms” from the 12 November 1999 issue of Science.  When activated in...
	Each investigator used a different experimental set-up.  Nick et al used murine alveolar macrophages, while Kraatz et al used murine peritoneal macrophages and seems to support Nick et al.  Park et al and Zhu et al studied cell lines and conflicted wi...
	Instead of preventing the infection, macrophages play the critical role of facilitator by allowing a BA bacterium to evade the immune response and progress to a systemic, lethal disease.  The ability of BA to effectively subvert a macrophage’s normal...
	In a dendritic cell (DC), anthrax toxin up- and down-regulates the production of different interleukins, which are cytokines secreted to mediate lymphocyte response, and inhibits the production of TNF-α (Tournier and others, 2005:4938-4940).  When MAP...
	Two studies recently showed that T-cells fail to produce IL-2 due to LT inhibition of MAPK signals.  One study found that LT caused inhibition of T-cell proliferation; LT was so selective in its attack on MAPK intermediates that the researchers even p...
	“Anthrax LT treatment causes severe B cell dysfunction” at “picomolar concentrations in vivo and sublethal doses in vitro”; LT causes “markedly diminished capacity to proliferate and produce” immunoglobulin-M (IgM) in response to stimuli (Fang and oth...
	While recent work has shown that DCs also transport anthrax spores to the lymph nodes (Cleret, 2007:7994), activated AMs have been shown to inhibit the migration of DCs to the lung (Jakubzick, 2006:3582) and the antigen presenting function of naïve an...
	System Biology and the Host-Pathogen Model

	“The emergence of systems biology signals a shift of focus away from molecular characterization of the components in the cell to an understanding of functional activity through the interactions in molecular dynamics” (Cho and Wolkenhauer, 2003:1503). ...
	Analysis of the molecular pathogenesis of infectious disease by a systems biology approach is especially complicated, in part because pathogens are highly diverse genetically, multiple phases of the infectious process can be prolonged and anatomically...
	Ultrasensitivity Model.
	MAPK Model with Scaffold Proteins.

	III.  Methodology
	Overview

	All models have been developed from published, fully-parameterized MAPK cascade models obtained through BioModels Database (http://www.ebi.ac.uk/biomodels), which facilitates systems biology research through the sponsorship of EMBL-EBI.  The following...
	Model Development

	The models were downloaded from BioModels in Standard Biological Mark-up Language (SBML), an XML-based computer language developed explicitly for computational modeling of biological processes.  The SBML code was imported into JDesigner (version 2.0.4...
	As discussed in Chapter II, the literature is clear in statements that LF cleaves all MAPKK isoforms, with the one exception of MEK5.  However, nothing could be found in the literature regarding the possibility of LF reacting differentially with the t...
	When a macrophage is challenged, the macrophage is activated, signaling initiates, and MAPKs are rapidly phosphorylated.  In the case of the ultrasensitivity model, biphosphorylation becomes the predominant state for MAPKKs; logically, LF would have t...
	All models were treated similarly with regard to implementing the first-order reaction kinetics for catalytic cleavage of MAPKKs by anthrax lethal factor.  Being produced by a bacterium in a phagosome within the macrophage, the chemical concentration ...
	In Berkeley Madonna, each model was manipulated and evaluated using procedures described in model-specific detail within the results.  The output for all models was the active terminal MAPK (MAPK-PP), for which concentration was plotted against time. ...
	Ultrasensitivity Model.

	The ultrasensitivity model includes MAPKKs in a bound complex form (“BIOMD0000000009- Huang1996_MAPK_ultrasens,” 2007).   For instance, MAPKKK
	Figure 12: Macrophage viability when cultured alone or with V1B
	(modified from Gutting and others, 2005)
	IV.  Analysis and Results
	Chapter Overview

	Each MAPK cascade model was modified to include LF proteolysis of MAPKKs via a first-order reaction.  The model output, active MAPK, was plotted, and the kinetic reaction rate constants for the cleavage of MAPKKs was parameterized to fit the in vitro ...
	Results of Simulation Scenarios
	Ultrasensitivity Model


	The ultrasensitivity model results in an S-curve of the MAPK activation and quickly approaches steady-state (Figure 6).  Though still present, the switch-like response to the bacterial stimulus is not perceptible in the output due to the time scale of...
	Authors often use the [SEM] to describe the variability of their sample… As the SEM is always smaller than the SD, the unsuspecting reader may think that the variability within the sample is much smaller than it really is… The SD tells us the distribu...
	Given that the SEM range is very near to zero and that an SD-derived confidence interval would likely result in a larger range, a viability of zero is therefore assumed to be within the confidence interval.  With parameters set according to the code i...
	The kinetic parameters for LF reactivity in the J774A.1 cell line were more easily obtained.  The range of error for the 5-hour data point (10-hour point in Figure 12, minus the 5-hour shift), using SEM, is approximately 40% to 60%.  This corresponds...
	Figure 14: Ultrasensitivity model parameterized to fit RAW264.7 in vitro data (dots)
	1.1e-4 s-1 for 60% viability up to 1.3e-4 s-1, for 40% viability.  Corresponding to the in vitro data, the fit for 40% viability at 5 hours (18,000 s) also corresponds to a near-zero, 1% viability at 10 hours (36,000 s) (Figure 15).  The data for both...
	Oscillating Negative Feedback Model

	The negative feedback model presents a challenge in that the average of the oscillations must be fit to the empirical cell line data.  Figures 16 and 18 illustrate the results of fitting the data using the non-competitive inhibition model where n=1, ...
	Figure 15:  Ultrasensitivity model parameterized to fit J774A.1 in vitro data (dots)
	rate constant for the RAW264.7 data (Figure 16) with n=1 is 2.9 e-4 s-1, and the rate is 1.2 e-4 s-1 for J774A.1 macrophages (Figure 17).  The stronger negative inhibition (n = 2) is applied in Figures 17 and 19 to give an oscillation peak near 288 M...
	notes that an increase in kinase concentrations or in the MM kinetic parameter KM could cause the oscillations to transition to a stable state, but increased negative feedback allowed oscillations to reemerge (Kholodenko, 2000:1586).  This suggests th...
	MAPK Model with Scaffold Proteins

	The scaffold protein model was not well suited for the modeling of LF cleavage of MAPKs resulting in macrophage cell death.  The RAW264.7 cells could be adequately fit with a high reaction rate constant of 5.9e-4 s-1, which is twice that of the other ...
	Figure 20: Scaffold protein model fit to RAW264.7 data (dots)
	Figure 21: Scaffold protein model showing poor fit to J774A.1 data (dots)
	The three MAPK models investigated here exhibit specific characteristics (ultrasensitivity, negative feedback and scaffold proteins) and were developed by their respective authors for the purpose of studying these respective aspects of the MAPK pathwa...
	Excluding the scaffold model, the approximations for the kinetic constants are reasonably consistent.  For the RAW264.7 cell line, the LF cleavage reaction occurred at a rate of approximately 3.0e-4 s-1 using both the ultrasensitivity and the n=1 nega...
	In the third model, the MAPKKs bound with scaffold proteins are a significant pool of the total available MAPKK population.  This effectively limits the elimination of MAPPKs by LF, so inhibition in RAW cells could only be achieved by applying a rate ...
	The estimated rate constants for the reaction between LF and MAPKK also exhibit an interesting trend: for the ultrasensitivity and negative feedback models, respectively, the reaction rate is estimated as being 2.3 and 2.4 times higher within the RAW2...
	Significance of Research

	This research presents what is believed to be the first host-pathogen systems biology model of anthrax infection.  Though a great deal of work must first be done to achieve it, the goal from a toxicologist’s or emergency responder’s perspective is a ...
	Recommendations for Future Research

	More cell viability data is needed to validate the models’ predictive power.  Biological variability is compounded by analysis being conducted in vitro, outside of the actual environment of infection and in the absence of other stimuli and factors th...
	Appendix C: Berkeley Madonna Code for Models
	Each model was converted to code able to be imported into Berkeley Madonna (version 8.3.11) following the procedures in Appendix B.  This appendix includes the code for each model as exported from Berkeley Madonna; while parameter values were varied a...
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